Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

DIY microscope transforms university research

03.11.2008
A resourceful lecturer at the University of Essex has turned his hand to a spot of DIY and built a high-tech microscope that will transform the university’s ability to undertake specialist medical and biological research.

Working in collaboration with a top scientist in the States and making use of the university’s excellent design facilities to make some parts from scratch, Dr Neil Kad has built the so-called TIRF (Total Internal Reflection Fluorescence) microscope over the last eight months. He even managed to buy one part for it on EBAY for £5 that would have cost £1000 new.

The microscope enables scientists and researchers to examine cells millions of times more closely and more clearly than a standard microscope, and is already being used extensively in areas such as forensics and pharmacology.

Using funding from the university and from the Royal Society, Neil managed to build the microscope from scratch at a cost of just £40,000. It would have cost over £200,000 to buy it new. “It has been a real labour of love,” he explained, “but now it’s ready to be unveiled and to be put to use here at the university and that’s fantastic not just for me, but many of my colleagues who can now be trained to use the microscope and will be able to use it for their research.”

Praising Neil’s initiative and resourcefulness, Professor Nelson Fernandez from the Department of Biological Sciences said: “The introduction of a TIRF-equipped microscope to the cell bio-imaging facility opens new possibilities for novel applications, for example, for studying how DNA repair occurs in real-time.”

Neil Kad’s and his American collaborator on the project, Bennett van Houten, from the University of Pittsburgh, will officially unveil the microscope later this month to a panel of specially-invited guests.

Christine Garrington | alfa
Further information:
http://www.essex.ac.uk

More articles from Medical Engineering:

nachricht 3-D visualization of the pancreas -- new tool in diabetes research
15.03.2017 | Umea University

nachricht New PET radiotracer identifies inflammation in life-threatening atherosclerosis
02.03.2017 | Society of Nuclear Medicine

All articles from Medical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>