Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Digital mammography reduces recall and biopsy rates

01.04.2014

Population-based screening with full-field digital mammography (FFDM) is associated with lower recall and biopsy rates than screen film mammography (SFM), suggesting that FFDM may reduce the number of diagnostic workups and biopsies that do not lead to diagnosis of breast cancer, according to a new study published online in the journal Radiology.

Previous population-based studies comparing the accuracy of SFM versus FFDM have reported conflicting results, and reported recall rates—or the rate at which women are called back for additional tests—have varied widely. In addition, past performance evaluations of breast imaging screening technologies do not account for the transition phase of adoption.

For this study, data collected from the Norwegian Breast Cancer Screening Program (NBCSP) was used to compare performance measures and outcomes before, during and after the transition from SFM to FFDM.

"The program invites women age 50 to 69 years to mammographic screening every two years," said Solveig Hofvind, Ph.D., from the Cancer Registry of Norway and Oslo University College, in Oslo, Norway. "We analyzed performance measures in the program as run in a usual setting."

To examine the effect of transition from SFM to FFDM, researchers analyzed the rate of cases, the recall rate, the rate of screen-detected cancer, and the rate of interval cancers.

"The study includes results from women screened with SFM only, with both SFM and FFDM, and with FFDM only. These combinations make us able to compare early performance measures achieved when using digital mammography in a routine setting, in a proper way," Dr. Hofvind said.

A total of 1,837,360 NBCSP screening exams were performed from 1996 through 2010, with 58.8 years being the average age at the time of screening. The overall recall rate was 3.4 percent for SFM and 2.9 percent for FFDM. The biopsy rate was 1.4 percent for SFM and 1.1 percent for FFDM.

Both the rate of invasive screening-detected and interval breast cancer remained stable during the transition from SFM to FFDM and after FFDM was firmly established. The positive predictive value of recalled examinations and of biopsy procedures increased from 19.3 percent and 48.3 percent to 22.7 percent and 57.5 percent, respectively, after adoption of FFDM.

By studying the transition phase of screening modality, researchers discovered FFDM implementation led to lower rates of false positive screening exams and fewer biopsies with benign outcome.

###

"Mammographic Performance in a Population-based Screening Program: Before, during, and after the Transition from Screen-Film to Full-Field Digital Mammography." Collaborating with Dr. Hofvind were Per Skaane, M.D., Ph.D., Joann G. Elmore, M.D., Ph.D., Sofie Sebuødegård, B.Sc., Solveig Roth Hoff, M.D., Ph.D., and Christoph I. Lee, M.D., MSHS.

Radiology is edited by Herbert Y. Kressel, M.D., Harvard Medical School, Boston, Mass., and owned and published by the Radiological Society of North America, Inc.

RSNA is an association of more than 53,000 radiologists, radiation oncologists, medical physicists and related scientists promoting excellence in patient care and health care delivery through education, research and technologic innovation. The Society is based in Oak Brook, Ill. (RSNA.org)

For patient-friendly information on mammography, visit RadiologyInfo.org.

Linda Brooks | EurekAlert!

Further reports about: Cancer Digital RSNA Radiological Screening biopsy mammography technologies transition

More articles from Medical Engineering:

nachricht Gentle sensors for diagnosing brain disorders
29.09.2016 | King Abdullah University of Science and Technology

nachricht New imaging technique in Alzheimer’s disease - opens up possibilities for new drug development
28.09.2016 | Lund University

All articles from Medical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First-Ever 3D Printed Excavator Project Advances Large-Scale Additive Manufacturing R&D

Heavy construction machinery is the focus of Oak Ridge National Laboratory’s latest advance in additive manufacturing research. With industry partners and university students, ORNL researchers are designing and producing the world’s first 3D printed excavator, a prototype that will leverage large-scale AM technologies and explore the feasibility of printing with metal alloys.

Increasing the size and speed of metal-based 3D printing techniques, using low-cost alloys like steel and aluminum, could create new industrial applications...

Im Focus: New welding process joins dissimilar sheets better

Friction stir welding is a still-young and thus often unfamiliar pressure welding process for joining flat components and semi-finished components made of light metals.
Scientists at the University of Stuttgart have now developed two new process variants that will considerably expand the areas of application for friction stir welding.
Technologie-Lizenz-Büro (TLB) GmbH supports the University of Stuttgart in patenting and marketing its innovations.

Friction stir welding is a still-young and thus often unfamiliar pressure welding process for joining flat components and semi-finished components made of...

Im Focus: First quantum photonic circuit with electrically driven light source

Optical quantum computers can revolutionize computer technology. A team of researchers led by scientists from Münster University and KIT now succeeded in putting a quantum optical experimental set-up onto a chip. In doing so, they have met one of the requirements for making it possible to use photonic circuits for optical quantum computers.

Optical quantum computers are what people are pinning their hopes on for tomorrow’s computer technology – whether for tap-proof data encryption, ultrafast...

Im Focus: OLED microdisplays in data glasses for improved human-machine interaction

The Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP has been developing various applications for OLED microdisplays based on organic semiconductors. By integrating the capabilities of an image sensor directly into the microdisplay, eye movements can be recorded by the smart glasses and utilized for guidance and control functions, as one example. The new design will be debuted at Augmented World Expo Europe (AWE) in Berlin at Booth B25, October 18th – 19th.

“Augmented-reality” and “wearables” have become terms we encounter almost daily. Both can make daily life a little simpler and provide valuable assistance for...

Im Focus: Artificial Intelligence Helps in the Discovery of New Materials

With the help of artificial intelligence, chemists from the University of Basel in Switzerland have computed the characteristics of about two million crystals made up of four chemical elements. The researchers were able to identify 90 previously unknown thermodynamically stable crystals that can be regarded as new materials. They report on their findings in the scientific journal Physical Review Letters.

Elpasolite is a glassy, transparent, shiny and soft mineral with a cubic crystal structure. First discovered in El Paso County (Colorado, USA), it can also be...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Paper – Panacea Green Infrastructure?

30.09.2016 | Event News

HLF: From an experiment to an establishment

29.09.2016 | Event News

European Health Forum Gastein 2016 kicks off today

28.09.2016 | Event News

 
Latest News

First-Ever 3D Printed Excavator Project Advances Large-Scale Additive Manufacturing R&D

30.09.2016 | Materials Sciences

New Technique for Finding Weakness in Earth’s Crust

30.09.2016 | Earth Sciences

Cells migrate collectively by intermittent bursts of activity

30.09.2016 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>