Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Detection of potentially deadly atrial fibrillation dramatically improved by new algorithm

20.05.2010
Developed by a researcher at Worcester Polytechnic Institute, the algorithm, which detects AF with an accuracy of 95 percent, is a key component of new technology from ScottCare Corporation that enables real-time, accurate detection of AF episodes

An algorithm developed by Ki H. Chon, PhD, head of the Department of Biomedical Engineering at Worcester Polytechnic Institute (WPI), in partnership with Snehraj Merchant of The ScottCare Corporation, makes it possible for a new heart monitoring system to detect incidents of atrial fibrillation (AF), the most common form of cardiac arrhythmia, far more accurately than previous methods.

The algorithm, utilized in the new ScottCare CardioView Dx Suite, detects AF episodes with an accuracy of 95 percent--a dramatic improvement over the previous state of the art--and immediately flags them, obviating the need for a trained technician to spend hours analyzing data.

Atrial fibrillation, which affects about three million Americans, is an independent risk factor for death and a major cause of ischemic stroke, in which blood flow is reduced to part of the brain. Treatments are available that can significantly reduce or eliminate AF, but the condition must first be detected, which is difficult, Chon says.

"Unfortunately, it is notoriously difficult to diagnose," he notes. "AF is often asymptomatic and intermittent. In the vast majority of cases, diagnosis depends upon the presence of symptoms, such as rapid and irregular heart rate, and upon serendipity. Patients may be unaware of their irregular pulse and diagnosis may only be established during a fortuitous visit to a doctor."

In AF, the heart's normal sinus rhythm is disrupted by random electrical impulses in the atria and the pulmonary veins. This results in an irregular heartbeat that may be fleeting or recur intermittently for weeks or even years. While it is often a random phenomenon initially, AF is likely to become chronic, and it significantly elevates the risk for stroke and other complications, including congestive heart failure.

Without careful monitoring and early treatment, AF patients may be at risk of heart failure. But even when patients wear standard Holter or arrhythmia event monitors, which record heartbeats over an extended period of time, accurate detection of this sporadic phenomenon is complicated by the fact that the average human heart beats 72 times per minute. "It is impractical for a trained technician to sort through data on 100,000 heartbeats in each day's recording," Chon says.

Chon's algorithm addresses the need for accurate and automatic detection in two ways: by using a novel technique to detect AF episodes that might otherwise be missed, and by enabling AF to be detected and recorded in real time, eliminating the need for manual detection after the fact.

Previous algorithms have relied upon tracking either the absence of a type of electrical activity in the heart known as the P-wave, or the variability in the timing of the contraction of the ventricle (which produces the tall spikes on an ECG tracing). While absence of P-wave fluctuations are the most telling barometer for AF, motion and noise artifacts can result in AF going undetected. Chon's algorithm, in contrast, combines three different statistical techniques, building upon the unique strengths of each to detect randomness, or markedly increased beat-to-beat variability. It is able to detect AF episodes with an accuracy of 95 percent; previous monitors have had an accuracy of only 70 to 80 percent.

The algorithm enables the TeleSentry mobile cardiac telemetry device and software in the CardioView Dx Suite to analyze the electrical information it detects in real time so it can immediately flag AF episodes, eliminating the need for technicians to spend hours analyzing the data. This is a significant improvement over traditional methods such as Holter monitors, which simply store raw data that must then be downloaded and carefully examined when the monitors are returned to a hospital or other healthcare facility.

"Early detection leads to early intervention, which is the key to saving lives," Merchant said. "That is the motivator for developing and refining algorithms like this. We started with a simple goal of designing an efficient algorithm to accurately detect atrial fibrillation. That led us to complex methods for achieving that goal. This project illustrates how harnessing computing power for rapid execution of complex algorithms is the future of medical diagnostic equipment."

The algorithm was tested repeatedly using data from an independent database provided by MIT before being tested on ScottCare's own patient data, which were collected from a double blind study. "It performed, in all cases, with a very high degree of accuracy," says Chon.

About the ScottCare CardioView Dx Suite

Incorporating Holter monitoring, ambulatory telemetry, arrhythmia/event monitoring, implantable cardioverter-defibrillator (ICD) monitoring and ambulatory blood pressure monitoring, the ScottCare CardioView Dx Suite is the only single-platform, fully-integrated technology package for comprehensive ambulatory cardiovascular monitoring currently available. It features the most accurate atrial fibrillation (AF) detection capability currently available anywhere, significantly increasing the CardioView Dx Suite's potential of saving lives.

About Worcester Polytechnic Institute

Founded in 1865 in Worcester, Mass., WPI was one of the nation's first engineering and technology universities. Its14 academic departments offer more than 50 undergraduate and graduate degree programs in science, engineering, technology, management, the social sciences, and the humanities and arts, leading to bachelor's, master's and PhD degrees. WPI's world-class faculty work with students in a number of cutting-edge research areas, leading to breakthroughs and innovations in such fields as biotechnology, fuel cells, information security, materials processing, and nanotechnology. Students also have the opportunity to make a difference to communities and organizations around the world through the university's innovative Global Perspective Program. There are more than 25 WPI project centers throughout North America and Central America, Africa, Australia, Asia, and Europe.

Michael Dorsey | EurekAlert!
Further information:
http://www.wpi.edu

More articles from Medical Engineering:

nachricht Novel PET tracer identifies most bacterial infections
06.10.2017 | Society of Nuclear Medicine and Molecular Imaging

nachricht Teleoperating robots with virtual reality
05.10.2017 | Massachusetts Institute of Technology, CSAIL

All articles from Medical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Los Alamos researchers and supercomputers help interpret the latest LIGO findings

18.10.2017 | Physics and Astronomy

Study shows how water could have flowed on 'cold and icy' ancient Mars

18.10.2017 | Physics and Astronomy

Navigational view of the brain thanks to powerful X-rays

18.10.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>