Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Detection of potentially deadly atrial fibrillation dramatically improved by new algorithm

20.05.2010
Developed by a researcher at Worcester Polytechnic Institute, the algorithm, which detects AF with an accuracy of 95 percent, is a key component of new technology from ScottCare Corporation that enables real-time, accurate detection of AF episodes

An algorithm developed by Ki H. Chon, PhD, head of the Department of Biomedical Engineering at Worcester Polytechnic Institute (WPI), in partnership with Snehraj Merchant of The ScottCare Corporation, makes it possible for a new heart monitoring system to detect incidents of atrial fibrillation (AF), the most common form of cardiac arrhythmia, far more accurately than previous methods.

The algorithm, utilized in the new ScottCare CardioView Dx Suite, detects AF episodes with an accuracy of 95 percent--a dramatic improvement over the previous state of the art--and immediately flags them, obviating the need for a trained technician to spend hours analyzing data.

Atrial fibrillation, which affects about three million Americans, is an independent risk factor for death and a major cause of ischemic stroke, in which blood flow is reduced to part of the brain. Treatments are available that can significantly reduce or eliminate AF, but the condition must first be detected, which is difficult, Chon says.

"Unfortunately, it is notoriously difficult to diagnose," he notes. "AF is often asymptomatic and intermittent. In the vast majority of cases, diagnosis depends upon the presence of symptoms, such as rapid and irregular heart rate, and upon serendipity. Patients may be unaware of their irregular pulse and diagnosis may only be established during a fortuitous visit to a doctor."

In AF, the heart's normal sinus rhythm is disrupted by random electrical impulses in the atria and the pulmonary veins. This results in an irregular heartbeat that may be fleeting or recur intermittently for weeks or even years. While it is often a random phenomenon initially, AF is likely to become chronic, and it significantly elevates the risk for stroke and other complications, including congestive heart failure.

Without careful monitoring and early treatment, AF patients may be at risk of heart failure. But even when patients wear standard Holter or arrhythmia event monitors, which record heartbeats over an extended period of time, accurate detection of this sporadic phenomenon is complicated by the fact that the average human heart beats 72 times per minute. "It is impractical for a trained technician to sort through data on 100,000 heartbeats in each day's recording," Chon says.

Chon's algorithm addresses the need for accurate and automatic detection in two ways: by using a novel technique to detect AF episodes that might otherwise be missed, and by enabling AF to be detected and recorded in real time, eliminating the need for manual detection after the fact.

Previous algorithms have relied upon tracking either the absence of a type of electrical activity in the heart known as the P-wave, or the variability in the timing of the contraction of the ventricle (which produces the tall spikes on an ECG tracing). While absence of P-wave fluctuations are the most telling barometer for AF, motion and noise artifacts can result in AF going undetected. Chon's algorithm, in contrast, combines three different statistical techniques, building upon the unique strengths of each to detect randomness, or markedly increased beat-to-beat variability. It is able to detect AF episodes with an accuracy of 95 percent; previous monitors have had an accuracy of only 70 to 80 percent.

The algorithm enables the TeleSentry mobile cardiac telemetry device and software in the CardioView Dx Suite to analyze the electrical information it detects in real time so it can immediately flag AF episodes, eliminating the need for technicians to spend hours analyzing the data. This is a significant improvement over traditional methods such as Holter monitors, which simply store raw data that must then be downloaded and carefully examined when the monitors are returned to a hospital or other healthcare facility.

"Early detection leads to early intervention, which is the key to saving lives," Merchant said. "That is the motivator for developing and refining algorithms like this. We started with a simple goal of designing an efficient algorithm to accurately detect atrial fibrillation. That led us to complex methods for achieving that goal. This project illustrates how harnessing computing power for rapid execution of complex algorithms is the future of medical diagnostic equipment."

The algorithm was tested repeatedly using data from an independent database provided by MIT before being tested on ScottCare's own patient data, which were collected from a double blind study. "It performed, in all cases, with a very high degree of accuracy," says Chon.

About the ScottCare CardioView Dx Suite

Incorporating Holter monitoring, ambulatory telemetry, arrhythmia/event monitoring, implantable cardioverter-defibrillator (ICD) monitoring and ambulatory blood pressure monitoring, the ScottCare CardioView Dx Suite is the only single-platform, fully-integrated technology package for comprehensive ambulatory cardiovascular monitoring currently available. It features the most accurate atrial fibrillation (AF) detection capability currently available anywhere, significantly increasing the CardioView Dx Suite's potential of saving lives.

About Worcester Polytechnic Institute

Founded in 1865 in Worcester, Mass., WPI was one of the nation's first engineering and technology universities. Its14 academic departments offer more than 50 undergraduate and graduate degree programs in science, engineering, technology, management, the social sciences, and the humanities and arts, leading to bachelor's, master's and PhD degrees. WPI's world-class faculty work with students in a number of cutting-edge research areas, leading to breakthroughs and innovations in such fields as biotechnology, fuel cells, information security, materials processing, and nanotechnology. Students also have the opportunity to make a difference to communities and organizations around the world through the university's innovative Global Perspective Program. There are more than 25 WPI project centers throughout North America and Central America, Africa, Australia, Asia, and Europe.

Michael Dorsey | EurekAlert!
Further information:
http://www.wpi.edu

More articles from Medical Engineering:

nachricht Biocompatible 3-D tracking system has potential to improve robot-assisted surgery
17.02.2017 | Children's National Health System

nachricht Real-time MRI analysis powered by supercomputers
17.02.2017 | University of Texas at Austin, Texas Advanced Computing Center

All articles from Medical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Start codons in DNA may be more numerous than previously thought

21.02.2017 | Life Sciences

An alternative to opioids? Compound from marine snail is potent pain reliever

21.02.2017 | Life Sciences

Warming ponds could accelerate climate change

21.02.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>