Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Delft University of Technology patent for manufacturing radio isotopes

12.09.2008
Thanks to a newly-developed technology at the Delft University of Technology in the Netherlands, global shortages of radio isotopes for cancer diagnosis could be a thing of the past. This is the message from Prof. Bert Wolterbeek of Delft University of Technology’s Reactor Institute Delft (RID) in an article in university journal Delta.

It has made global headlines recently: hospitals are facing a shortage of radio isotopes which means that patients will have to wait longer for cancer diagnosis. Only a handful of reactors around the world manufacture the isotope, technetium-99m, which is used to treat about forty million patients annually. Three of these reactors are currently unable to supply any due to maintenance work, including Europe’s most important: the Dutch reactor in Petten.

Additional isotope manufacturers would reduce the risk of shortages considerably. The current process requires enriched uranium. And that is the kind of material for which manufacturers need a special permit due to nuclear non-proliferation treaties. Prof. Bert Wolterbeek of the RID is working on a radical solution to this problem. He is developing a method for producing the sought-after isotope without uranium. If these experiments prove to be applicable in an industrial environment, many more factories could manufacture the material.

"Technetium-99m, the material in question, is currently made by highly enriched uranium fission,” Wolterbeek explains. "One of the products created is radioactive molybdenum-99, the raw material for technetium-99m. Manufacturers supply this molybdenum to hospitals secured in rods. A hospital can ‘harvest’ the technetium-99m isotope from a rod for a week as the molybdeen-99 slowly decays into technetium-99m."

Yet molybdenum-99 can also be manufactured from molybdenum-98, a stable isotope made of natural molybdenum, a material which mining companies already extract from the ground. Wolterbeek has patented a technique in which he bombards this raw material with neutrons in order to make molybdenum-99. The molybdenum atoms are not just ‘activated’ by the neutron bombardment, but are also separated from the surrounding atoms by the energy transfer. The resultant molybdenum-99 can then be dissolved in water. This means that the isotope can be produced in highly concentrated form. And this aspect is crucial. Wolterbeek: "The activity concentration of the radioactive material needs to be high, otherwise patients will be given too high a chemical dose to form a clear radiation image."

Wolterbeek wishes to hold larger-scale tests in conjunction with Urenco. The head of the Stable Isotopes department at this reprocessing company, Charles Mol, envisages the technology from Delft University of Technology being used to open up a "highly interesting market". In his view, scientists around the globe are desperately searching for alternative manufacturing methods as the use of enriched uranium will cease at some point due to nuclear non-proliferation treaties. "Another reason," he says, "is that the current manufacturing process produces a huge amount of radioactive waste. And any alternative method using low-enriched uranium could produce even more waste."

Frank Nuijens | alfa
Further information:
http://www.tudelft.nl

More articles from Medical Engineering:

nachricht Wireless power can drive tiny electronic devices in the GI tract
28.04.2017 | Brigham and Women's Hospital

nachricht Artificial intelligence may help diagnose tuberculosis in remote areas
25.04.2017 | Radiological Society of North America

All articles from Medical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fighting drug resistant tuberculosis – InfectoGnostics meets MYCO-NET² partners in Peru

28.04.2017 | Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

 
Latest News

Wireless power can drive tiny electronic devices in the GI tract

28.04.2017 | Medical Engineering

Ice cave in Transylvania yields window into region's past

28.04.2017 | Earth Sciences

Nose2Brain – Better Therapy for Multiple Sclerosis

28.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>