Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Delft University of Technology patent for manufacturing radio isotopes

12.09.2008
Thanks to a newly-developed technology at the Delft University of Technology in the Netherlands, global shortages of radio isotopes for cancer diagnosis could be a thing of the past. This is the message from Prof. Bert Wolterbeek of Delft University of Technology’s Reactor Institute Delft (RID) in an article in university journal Delta.

It has made global headlines recently: hospitals are facing a shortage of radio isotopes which means that patients will have to wait longer for cancer diagnosis. Only a handful of reactors around the world manufacture the isotope, technetium-99m, which is used to treat about forty million patients annually. Three of these reactors are currently unable to supply any due to maintenance work, including Europe’s most important: the Dutch reactor in Petten.

Additional isotope manufacturers would reduce the risk of shortages considerably. The current process requires enriched uranium. And that is the kind of material for which manufacturers need a special permit due to nuclear non-proliferation treaties. Prof. Bert Wolterbeek of the RID is working on a radical solution to this problem. He is developing a method for producing the sought-after isotope without uranium. If these experiments prove to be applicable in an industrial environment, many more factories could manufacture the material.

"Technetium-99m, the material in question, is currently made by highly enriched uranium fission,” Wolterbeek explains. "One of the products created is radioactive molybdenum-99, the raw material for technetium-99m. Manufacturers supply this molybdenum to hospitals secured in rods. A hospital can ‘harvest’ the technetium-99m isotope from a rod for a week as the molybdeen-99 slowly decays into technetium-99m."

Yet molybdenum-99 can also be manufactured from molybdenum-98, a stable isotope made of natural molybdenum, a material which mining companies already extract from the ground. Wolterbeek has patented a technique in which he bombards this raw material with neutrons in order to make molybdenum-99. The molybdenum atoms are not just ‘activated’ by the neutron bombardment, but are also separated from the surrounding atoms by the energy transfer. The resultant molybdenum-99 can then be dissolved in water. This means that the isotope can be produced in highly concentrated form. And this aspect is crucial. Wolterbeek: "The activity concentration of the radioactive material needs to be high, otherwise patients will be given too high a chemical dose to form a clear radiation image."

Wolterbeek wishes to hold larger-scale tests in conjunction with Urenco. The head of the Stable Isotopes department at this reprocessing company, Charles Mol, envisages the technology from Delft University of Technology being used to open up a "highly interesting market". In his view, scientists around the globe are desperately searching for alternative manufacturing methods as the use of enriched uranium will cease at some point due to nuclear non-proliferation treaties. "Another reason," he says, "is that the current manufacturing process produces a huge amount of radioactive waste. And any alternative method using low-enriched uranium could produce even more waste."

Frank Nuijens | alfa
Further information:
http://www.tudelft.nl

More articles from Medical Engineering:

nachricht New technique makes brain scans better
22.06.2017 | Massachusetts Institute of Technology

nachricht New technology enables effective simultaneous testing for multiple blood-borne pathogens
13.06.2017 | Elsevier

All articles from Medical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Extensive Funding for Research on Chromatin, Adrenal Gland, and Cancer Therapy

28.06.2017 | Awards Funding

Predicting eruptions using satellites and math

28.06.2017 | Earth Sciences

Extremely fine measurements of motion in orbiting supermassive black holes

28.06.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>