Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Deeper than ancestry.com, 'EvoCor' identifies gene relationships

04.06.2014

Virginia Tech researchers develop search engine for identifying functionally linked genes

A frontier lies deep within our cells.


Gregorio Valdez, PhD

Jim Stroup/Virginia Tech

Our bodies are as vast as oceans and space, composed of a dizzying number of different types of cells. Exploration reaches far, yet the genes that make each cell and tissue unique have remained largely obscure.

That’s changing with the help of a team led by Gregorio Valdez, an assistant professor at the Virginia Tech Carilion Research Institute.

Valdez and his team designed a search engine – called EvoCor – that identifies genes that are functionally linked.

The name, a portmanteau of “evolution” and “correlation,” points to the idea that genes with a similar evolutionary history and expression pattern have evolved together to control a specific biological process.

The project, described in May in the journal Nucleic Acids Research, may help medical scientists find ways to treat diseases that often have a genetic component, such as cancer or Alzheimer’s disease.

A scientist types the name of a gene into a search box, and EvoCor quickly sifts through the evolutionary history of all mapped genes – human and otherwise.

EvoCor then compares the expression pattern of all genes to generate a list of candidate genes that function together with the query gene to drive a cellular process – from generating more energy for the cell to clearing cellular debris. The scientist can use this list for the next stage of research.

“This platform allows researchers to generate lists of candidate genes quickly and at no cost,” Valdez said. “EvoCor should speed the discovery of complex molecular mechanisms that control key cellular processes, including those that function to regenerate axons.”

Most cellular functions — communication, division, death — result from a gene telling a cell how it’s supposed to behave.

Scientists study how a gene is expressed and functions to determine, for example, eye color. The matter becomes more complicated when multiple genes with different functions are intricately related. Therein lies the problem. A researcher may start with one gene, but needs to know what other genes might play a part in influencing a particularly complex cellular function, such as the survival of neurons.

Once the other genes are known, the scientist can strategically study their function alone and as part of the larger network of genes.

To identify candidate genes, scientists have relied on expensive and time-consuming biochemical approaches. EvoCor takes advantage of the wealth of publicly available genome and gene expression datasets to generate a list of candidate genes.

“It comes down to evolution,” said James Dittmar, a fourth-year Virginia Tech Carilion School of Medicine student who is also a member of the Valdez laboratory and the first author of the journal article. “We took advantage of nearly 200 organisms with fully sequenced genomes to map out and compare the evolutionary history of all human genes.”

Combing through the 21,000 human genes already mapped, 182 different genomes, and large gene expression datasets all maintained by the National Institutes of Health is a huge task. EvoCor makes it far more manageable.

“Scientists can now use EvoCor to take advantage of this massive amount of publicly available data to discover networks of genes without prior knowledge of their function,” Valdez said.

When scientists fully understand every gene influencing a particular cellular output, they will have more options for developing therapeutics. In his own research, Valdez hopes to discover molecules that function to slow or halt cognitive and motor impairment caused by diseases and aging.

“We know of many genes that, when mutated, lead to disastrous outcomes,” Valdez said. “But these genes don’t function alone. EvoCor identifies functional partners and those partners could turn out to be better targets for therapeutics.”

EvoCor was developed in collaboration with Lauren McIver, Pawel Michalak, and Harold “Skip” Garner, all scientists at the Virginia Bioinformatics Institute of Virginia Tech.

Valdez and his team plan to modify EvoCor further, so it can make even more powerful and specific predictions, easing the way for researchers trekking the new frontier.

Written by Ashley WennersHerron

Media contact

Paula Byron
paulabyron@vt.edu
540-526-2027

Paula Byron | Eurek Alert!
Further information:
http://research.vtc.vt.edu/news/2014/jun/02/deeper-ancestrycom-evocor-identifies-gene-relation/

Further reports about: Exploration Medicine diseases function genes mechanisms oceans

More articles from Medical Engineering:

nachricht MRI technique differentiates benign breast lesions from malignancies
20.02.2018 | Radiological Society of North America

nachricht True to type: From human biopsy to complex gut physiology on a chip
14.02.2018 | Wyss Institute for Biologically Inspired Engineering at Harvard

All articles from Medical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

Im Focus: Hybrid optics bring color imaging using ultrathin metalenses into focus

For photographers and scientists, lenses are lifesavers. They reflect and refract light, making possible the imaging systems that drive discovery through the microscope and preserve history through cameras.

But today's glass-based lenses are bulky and resist miniaturization. Next-generation technologies, such as ultrathin cameras or tiny microscopes, require...

Im Focus: Stem cell divisions in the adult brain seen for the first time

Scientists from the University of Zurich have succeeded for the first time in tracking individual stem cells and their neuronal progeny over months within the intact adult brain. This study sheds light on how new neurons are produced throughout life.

The generation of new nerve cells was once thought to taper off at the end of embryonic development. However, recent research has shown that the adult brain...

Im Focus: Interference as a new method for cooling quantum devices

Theoretical physicists propose to use negative interference to control heat flow in quantum devices. Study published in Physical Review Letters

Quantum computer parts are sensitive and need to be cooled to very low temperatures. Their tiny size makes them particularly susceptible to a temperature...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

'Lipid asymmetry' plays key role in activating immune cells

20.02.2018 | Life Sciences

MRI technique differentiates benign breast lesions from malignancies

20.02.2018 | Medical Engineering

Major discovery in controlling quantum states of single atoms

20.02.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>