Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Deep Inside the Body, Tiny Mechanical Microscope Diagnoses Disease

16.08.2012
Groundbreaking Technology, But Specialists Need Improved, Standardized Guidelines to Advance Diagnostic Accuracy, Says Weill Cornell Researcher

Tiny space age probes — those that can see inside single living cells — are increasingly being used to diagnose illness in hard-to-reach areas of the body.

NewYork-Presbyterian Hospital/Weill Cornell Medical Center’s Dr. Michel Kahaleh often threads a tiny microscope into the narrow bile ducts that connect the liver to the small intestine to hunt for cancer. He also uses the device to minutely explore the pancreatic duct as one of a few doctors in the country to use such technology in this way.

But because these devices are comparatively new, Dr. Kahaleh, chief of endoscopy at the Center for Advanced Digestive Care at NewYork-Presbyterian/Weill Cornell and professor of clinical medicine at Weill Cornell Medical College, suspected that the specialists who are beginning to use them may be interpreting what they see in different ways.

That’s exactly what he and his research team discovered, when they sent six different specialists at five different medical institutions recorded videos taken by a probe-based confocal laser endomicroscopy (pCLE) deep inside 25 patients with abnormally narrowed bile ducts.

The study, published in Digestive Diseases and Sciences, demonstrates there was “poor” to “fair” agreement on the clinical significance of what the physicians were viewing in the videos — whether what they saw represented cancer, simple inflammation, or a benign condition.

“That means physicians need to come up with a standard way of interpreting what the videos reveal in order to properly use this “amazing technology,” says senior author Dr. Kahaleh, who is also medical director of the Pancreas Program at Weill Cornell. “We can see detail that was just unimaginable a decade ago — this breakthrough is born for the bile duct and those tiny tubes and complicated organ structures that no one has ever been able to visualize before,” he says. “And when physicians are certain of what they are seeing, we will be able to greatly improve patient treatment, avoiding unnecessary surgery whenever possible.”

The Need to Know What You See

The human bile duct transports bile, secreted by the liver to aid in the process of digestion, to the small intestine. But inflammatory disease, the passing of gallstones or a tumor can cause the bile duct to constrict, resulting in a blockage that can lead to jaundice, cirrhosis, and other conditions.

The U.S. Food and Drug Administration approved pCLE diagnostic systems for use in the bile duct and pancreas two years ago. The pCLE is a mini microscopic probe that is threaded inside a larger “spy glass” probe. The pCLE can then image blood vessels, mucosal structures and epithelial tissue in real-time, broadcasting these images on a large monitor for physicians to examine.

But the vast majority of institutions may still use a rather hit-or-miss technique to determine if a bile duct is cancerous. The traditional technique is to thread a probe inside the duct to where it is abnormally narrowed and then to use a small brush or tiny forceps to gather some cells that can then be biopsied in a lab.“But we still miss 20-30 percent of bile duct cancer or other tumors in this way, and that is unacceptable,” Dr. Kahaleh says.

If a tumor is found in the bile duct, it can be removed, and a replacement can be fashioned out of the bowel. “It’s a big operation, and you want to make sure it is necessary,” says Dr. Kahaleh. “If there is any way to prevent surgery that would be a phenomenal advance for patient care.”

In this study, the six gastroenterologists trained in using bile duct pCLE were asked to analyze seven variables seen in the 30-second to 1-minute video clips, and diagnose whether the bile duct was cancerous or not. (Only the study coordinator knew the results in advance due to confirmation from tissue biopsies after surgery, or other evidence of malignancy.)

Diagnostic agreement between the specialists was poor to fair, depending on the variable, as was the final diagnosis.

“It is clear physicians need a standard by which to understand what they see, which will also need to involve more training,” says Dr. Kahaleh. “This is increasingly important, as these minimally invasive systems are proposed for use in diagnosing other health issues in the gastrointestinal tract, including ulcerative colitis and Barrett’s esophagus.”

“We can now see inside these tiny organs, but we just need to know exactly what we are looking at,” he adds.

The study’s co-authors include Dr. Jayant P. Talreja, Dr. Mihir R. Bakhru, and Dr. Bryan G. Sauer, from the University of Virginia; Dr. Amrita Sethi, from Columbia University Medical Center; Dr, Priya A. Jamidar and Dr. Uzma D. Siddiqui, from Yale University; Dr. Satish K. Singh from Boston University School of Medicine; Dr. Richard S. Kwon from the University of Michigan; Dr. Mandeep Sawhney from BIDMC in Boston; and Dr. Monica Gaidhane and Pam Kline from Weill Cornell Medical College.

NewYork-Presbyterian Hospital/Weill Cornell Medical Center

NewYork-Presbyterian Hospital/Weill Cornell Medical Center, located in New York City, is one of the leading academic medical centers in the world, comprising the teaching hospital NewYork-Presbyterian and Weill Cornell Medical College, the medical school of Cornell University. NewYork-Presbyterian/Weill Cornell provides state-of-the-art inpatient, ambulatory and preventive care in all areas of medicine, and is committed to excellence in patient care, education, research and community service. Weill Cornell physician-scientists have been responsible for many medical advances — including the development of the Pap test for cervical cancer; the synthesis of penicillin; the first successful embryo-biopsy pregnancy and birth in the U.S.; the first clinical trial for gene therapy for Parkinson’s disease; the first indication of bone marrow’s critical role in tumor growth; and, most recently, the world’s first successful use of deep brain stimulation to treat a minimally conscious brain-injured patient. NewYork-Presbyterian Hospital also comprises NewYork-Presbyterian Hospital/Columbia University Medical Center, NewYork-Presbyterian/Morgan Stanley Children’s Hospital, NewYork-Presbyterian Hospital/Westchester Division and NewYork-Presbyterian/The Allen Hospital. NewYork-Presbyterian is the #1 hospital in the New York metropolitan area and is consistently ranked among the best academic medical institutions in the nation, according to U.S.News & World Report. Weill Cornell Medical College is the first U.S. medical college to offer a medical degree overseas and maintains a strong global presence in Austria, Brazil, Haiti, Tanzania, Turkey and Qatar. For more information, visit www.nyp.org and weill.cornell.edu.

Takla Boujaoude | Newswise Science News
Further information:
http://ill.cornell.edu
http://www.nyp.org

More articles from Medical Engineering:

nachricht New technique makes brain scans better
22.06.2017 | Massachusetts Institute of Technology

nachricht New technology enables effective simultaneous testing for multiple blood-borne pathogens
13.06.2017 | Elsevier

All articles from Medical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Quantum thermometer or optical refrigerator?

23.06.2017 | Physics and Astronomy

A 100-year-old physics problem has been solved at EPFL

23.06.2017 | Physics and Astronomy

Equipping form with function

23.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>