Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Deep inside the body, tiny mechanical microscope

15.08.2012
Groundbreaking technology, but specialists need improved, standardized guidelines to advance diagnostic accuracy, says Weill Cornell researcher

Tiny space age probes — those that can see inside single living cells — are increasingly being used to diagnose illness in hard-to-reach areas of the body.

NewYork-Presbyterian Hospital/Weill Cornell Medical Center's Dr. Michel Kahaleh often threads a tiny microscope into the narrow bile ducts that connect the liver to the small intestine to hunt for cancer. He also uses the device to minutely explore the pancreatic duct as one of a few doctors in the country to use such technology in this way.

But because these devices are comparatively new, Dr. Kahaleh, chief of endoscopy at the Center for Advanced Digestive Care at NewYork-Presbyterian/Weill Cornell and professor of clinical medicine at Weill Cornell Medical College, suspected that the specialists who are beginning to use them may be interpreting what they see in different ways.

That's exactly what he and his research team discovered, when they sent six different specialists at five different medical institutions recorded videos taken by a probe-based confocal laser endomicroscopy (pCLE) deep inside 25 patients with abnormally narrowed bile ducts.

The study, published in Digestive Diseases and Sciences, demonstrates there was "poor" to "fair" agreement on the clinical significance of what the physicians were viewing in the videos — whether what they saw represented cancer, simple inflammation, or a benign condition.

"That means physicians need to come up with a standard way of interpreting what the videos reveal in order to properly use this "amazing technology," says senior author Dr. Kahaleh, who is also medical director of the Pancreas Program at Weill Cornell. "We can see detail that was just unimaginable a decade ago — this breakthrough is born for the bile duct and those tiny tubes and complicated organ structures that no one has ever been able to visualize before," he says. "And when physicians are certain of what they are seeing, we will be able to greatly improve patient treatment, avoiding unnecessary surgery whenever possible."

The Need to Know What You See

The human bile duct transports bile, secreted by the liver to aid in the process of digestion, to the small intestine. But inflammatory disease, the passing of gallstones or a tumor can cause the bile duct to constrict, resulting in a blockage that can lead to jaundice, cirrhosis, and other conditions.

The U.S. Food and Drug Administration approved pCLE diagnostic systems for use in the bile duct and pancreas two years ago. The pCLE is a mini microscopic probe that is threaded inside a larger "spy glass" probe. The pCLE can then image blood vessels, mucosal structures and epithelial tissue in real-time, broadcasting these images on a large monitor for physicians to examine.

But the vast majority of institutions may still use a rather hit-or-miss technique to determine if a bile duct is cancerous. The traditional technique is to thread a probe inside the duct to where it is abnormally narrowed and then to use a small brush or tiny forceps to gather some cells that can then be biopsied in a lab."But we still miss 20-30 percent of bile duct cancer or other tumors in this way, and that is unacceptable," Dr. Kahaleh says.

If a tumor is found in the bile duct, it can be removed, and a replacement can be fashioned out of the bowel. "It's a big operation, and you want to make sure it is necessary," says Dr. Kahaleh. "If there is any way to prevent surgery that would be a phenomenal advance for patient care."

In this study, the six gastroenterologists trained in using bile duct pCLE were asked to analyze seven variables seen in the 30-second to 1-minute video clips, and diagnose whether the bile duct was cancerous or not. (Only the study coordinator knew the results in advance due to confirmation from tissue biopsies after surgery, or other evidence of malignancy.)

Diagnostic agreement between the specialists was poor to fair, depending on the variable, as was the final diagnosis.

"It is clear physicians need a standard by which to understand what they see, which will also need to involve more training," says Dr. Kahaleh. "This is increasingly important, as these minimally invasive systems are proposed for use in diagnosing other health issues in the gastrointestinal tract, including ulcerative colitis and Barrett's esophagus."

"We can now see inside these tiny organs, but we just need to know exactly what we are looking at," he adds.

The study's co-authors include Dr. Jayant P. Talreja, Dr. Mihir R. Bakhru, and Dr. Bryan G. Sauer, from the University of Virginia; Dr. Amrita Sethi, from Columbia University Medical Center; Dr, Priya A. Jamidar and Dr. Uzma D. Siddiqui, from Yale University; Dr. Satish K. Singh from Boston University School of Medicine; Dr. Richard S. Kwon from the University of Michigan; Dr. Mandeep Sawhney from BIDMC in Boston; and Dr. Monica Gaidhane and Pam Kline from Weill Cornell Medical College.

NewYork-Presbyterian Hospital/Weill Cornell Medical Center

NewYork-Presbyterian Hospital/Weill Cornell Medical Center, located in New York City, is one of the leading academic medical centers in the world, comprising the teaching hospital NewYork-Presbyterian and Weill Cornell Medical College, the medical school of Cornell University. NewYork-Presbyterian/Weill Cornell provides state-of-the-art inpatient, ambulatory and preventive care in all areas of medicine, and is committed to excellence in patient care, education, research and community service. Weill Cornell physician-scientists have been responsible for many medical advances — including the development of the Pap test for cervical cancer; the synthesis of penicillin; the first successful embryo-biopsy pregnancy and birth in the U.S.; the first clinical trial for gene therapy for Parkinson's disease; the first indication of bone marrow's critical role in tumor growth; and, most recently, the world's first successful use of deep brain stimulation to treat a minimally conscious brain-injured patient. NewYork-Presbyterian Hospital also comprises NewYork-Presbyterian Hospital/Columbia University Medical Center, NewYork-Presbyterian/Morgan Stanley Children's Hospital, NewYork-Presbyterian Hospital/Westchester Division and NewYork-Presbyterian/The Allen Hospital. NewYork-Presbyterian is the #1 hospital in the New York metropolitan area and is consistently ranked among the best academic medical institutions in the nation, according to U.S.News & World Report. Weill Cornell Medical College is the first U.S. medical college to offer a medical degree overseas and maintains a strong global presence in Austria, Brazil, Haiti, Tanzania, Turkey and Qatar. For more information, visit www.nyp.org and weill.cornell.edu.

Takla Boujaoude | EurekAlert!
Further information:
http://www.cornell.edu

More articles from Medical Engineering:

nachricht 'Memtransistor' brings world closer to brain-like computing
22.02.2018 | Northwestern University

nachricht MRI technique differentiates benign breast lesions from malignancies
20.02.2018 | Radiological Society of North America

All articles from Medical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Developing reliable quantum computers

International research team makes important step on the path to solving certification problems

Quantum computers may one day solve algorithmic problems which even the biggest supercomputers today can’t manage. But how do you test a quantum computer to...

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Basque researchers turn light upside down

23.02.2018 | Physics and Astronomy

Finnish research group discovers a new immune system regulator

23.02.2018 | Health and Medicine

Attoseconds break into atomic interior

23.02.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>