Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


CT detects twice as many lung cancers as X-ray at initial screening exam

Investigators say 20 percent lung cancer mortality reduction previously reported in the NLST is achievable at centers in the US

National Lung Screening Trial (NLST) investigators also conclude that the 20 percent reduction in lung cancer mortality with low-dose computed tomography (LDCT) versus chest X-ray (CXR) screening previously reported in the NLST primary paper is achievable at experienced screening centers in the United States.

Philadelphia, PA—Physicians have more information to share with their patients about the benefits and risks of LDCT lung cancer screening following today's publication in the New England Journal of Medicine of the results of the first (of three planned) annual screening examinations from the NLST. "For a cancer screening to work, it's important to verify that it can in fact discover cancers early.

The analysis of NLST participants' initial annual screening examination provides evidence that the number of early-stage cancers detected in the trial's CT arm were significantly greater than the number detected in the chest X-ray arm," says Timothy Church, Ph.D., a biostatistician and professor in the School of Public Health at the University of Minnesota who has been involved with the NLST's design, implementation and analysis.

Church also points out that a reduction in mortality is the ultimate indicator of a successful cancer screening strategy. The NLST is a large-scale, longitudinal clinical trial that randomized over 53,400 study participants equally into either the LDCT or standard CXR arm to evaluate whether lung cancer screening saves lives. Published results (NEJM; 2011) reported a 20 percent reduction in lung cancer deaths among study participants (all at high risk for the disease) screened with LDCT versus those screened with CXR.

The authors report that the NLST initial-screening results are reflective of other large trials with regard to positive LDCT versus CXR results, with more positive screening exams [7191 vs. 2387, respectively], more diagnostic procedures [6369 vs. 2176, respectively], more biopsies and other invasive procedures [297 vs. 121, respectively], and more lung cancers seen in the LDCT arm than in the CXR arm during the first screening round of NLST [292 vs. 190, respectively]. Although these results were generally anticipated, a key reason to publish the data was to document the exact differences between the two arms. "Although we did see that CT resulted in referring more patients for additional testing, the question comes down to whether the 20 percent reduction in mortality is worth the additional morbidity introduced by screening high-risk patients," says Church. He notes that although there were more follow-up procedures in the LDCT versus the CXR arm, it was encouraging to confirm that the number of individuals who actually had a more invasive follow-up procedure was quite small.

Another encouraging result reported is the high rate of compliance in performing the LDCT examination as specified in the research protocol across the 33 imaging facilities that carried out the study. "The sites complied with the low-dose CT imaging protocol specifications in 98.5 percent of all studies performed, which is outstanding considering the many thousands of scans performed," states Denise R. Aberle, M.D., the national principal investigator for NLST ACRIN and site co-principal investigator for the UCLA NLST team. Aberle, a member of the UCLA Jonsson Comprehensive Cancer Center, professor of Radiology and Bioengineering and vice chair for Research in Radiology at UCLA, also emphasizes that the first-screen result strongly suggests that CT lung cancer screening programs with radiologists who possess similar expertise and interpret similar numbers of CT cases that are obtained on scanners of the same caliber or better as those required for the NLST are likely to have results similar to those reported in the paper.

"What we've learned from the analysis of the first-screen results provides clinicians additional facts to discuss with patients who share similar characteristics as the NLST participants (current or former heavy smokers over the age of 55)", says Church. "The results also caution against making blanket lung cancer screening recommendations, because each person's trade-off between the risk of having an unnecessary procedure and the fear of dying of lung cancer is uniquely individual."

"Today's publication represents the type of immensely important data NLST will continue to provide about lung cancer screening in the United States," says Mitchell J. Schnall, M.D., Ph.D., ACRIN Network Chair, group co-chair of the ECOG-ACRIN Cancer Research Group and chair of the Radiology Department of the University of Pennsylvania. "I congratulate the NLST team on its ongoing effort to continue to mine information from the NLST trial to help guide patient, clinician and health care policy decisions."


The ECOG-ACRIN Cancer Research Group designs and conducts biomarker-driven cancer research involving adults who have or are at risk of developing cancer. ECOG-ACRIN was formed in May 2012 by the merger of the Eastern Cooperative Oncology Group (ECOG) and the oncology program of the American College of Radiology Imaging Network (ACRIN). ECOG-ACRIN has integrated therapeutic and diagnostic imaging-based research disciplines with the latest bioinformatics technologies into a single scientific organization. With its capacity to explore integral biomarkers, including imaging markers of response and prognosis, ECOG-ACRIN is poised to achieve patient-centered research breakthroughs across the cancer care continuum, from prevention and screening through the treatment of metastatic disease. For more information, visit


ACRIN engages a global network of investigators dedicated to advancing the practice of medical imaging through the conduct of multicenter clinical trials that deliver critical information to improve patient care. The network's imaging research encompasses a broad range of disease types including cardiovascular, neurological, and oncologic and imaging modalities including advanced MRI and CT, PET with novel radiotracers and new technology such as tomosynthesis. ACRIN is administered by the American College of Radiology and is headquartered at the ACR Clinical Research Center in Philadelphia, PA. The ACRIN Biostatistics Center is located at Brown University in Providence, RI.

Shawn Farley | EurekAlert!
Further information:

More articles from Medical Engineering:

nachricht Gentle sensors for diagnosing brain disorders
29.09.2016 | King Abdullah University of Science and Technology

nachricht New imaging technique in Alzheimer’s disease - opens up possibilities for new drug development
28.09.2016 | Lund University

All articles from Medical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>