Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

CT detects twice as many lung cancers as X-ray at initial screening exam

23.05.2013
Investigators say 20 percent lung cancer mortality reduction previously reported in the NLST is achievable at centers in the US

National Lung Screening Trial (NLST) investigators also conclude that the 20 percent reduction in lung cancer mortality with low-dose computed tomography (LDCT) versus chest X-ray (CXR) screening previously reported in the NLST primary paper is achievable at experienced screening centers in the United States.

Philadelphia, PA—Physicians have more information to share with their patients about the benefits and risks of LDCT lung cancer screening following today's publication in the New England Journal of Medicine of the results of the first (of three planned) annual screening examinations from the NLST. "For a cancer screening to work, it's important to verify that it can in fact discover cancers early.

The analysis of NLST participants' initial annual screening examination provides evidence that the number of early-stage cancers detected in the trial's CT arm were significantly greater than the number detected in the chest X-ray arm," says Timothy Church, Ph.D., a biostatistician and professor in the School of Public Health at the University of Minnesota who has been involved with the NLST's design, implementation and analysis.

Church also points out that a reduction in mortality is the ultimate indicator of a successful cancer screening strategy. The NLST is a large-scale, longitudinal clinical trial that randomized over 53,400 study participants equally into either the LDCT or standard CXR arm to evaluate whether lung cancer screening saves lives. Published results (NEJM; 2011) reported a 20 percent reduction in lung cancer deaths among study participants (all at high risk for the disease) screened with LDCT versus those screened with CXR.

The authors report that the NLST initial-screening results are reflective of other large trials with regard to positive LDCT versus CXR results, with more positive screening exams [7191 vs. 2387, respectively], more diagnostic procedures [6369 vs. 2176, respectively], more biopsies and other invasive procedures [297 vs. 121, respectively], and more lung cancers seen in the LDCT arm than in the CXR arm during the first screening round of NLST [292 vs. 190, respectively]. Although these results were generally anticipated, a key reason to publish the data was to document the exact differences between the two arms. "Although we did see that CT resulted in referring more patients for additional testing, the question comes down to whether the 20 percent reduction in mortality is worth the additional morbidity introduced by screening high-risk patients," says Church. He notes that although there were more follow-up procedures in the LDCT versus the CXR arm, it was encouraging to confirm that the number of individuals who actually had a more invasive follow-up procedure was quite small.

Another encouraging result reported is the high rate of compliance in performing the LDCT examination as specified in the research protocol across the 33 imaging facilities that carried out the study. "The sites complied with the low-dose CT imaging protocol specifications in 98.5 percent of all studies performed, which is outstanding considering the many thousands of scans performed," states Denise R. Aberle, M.D., the national principal investigator for NLST ACRIN and site co-principal investigator for the UCLA NLST team. Aberle, a member of the UCLA Jonsson Comprehensive Cancer Center, professor of Radiology and Bioengineering and vice chair for Research in Radiology at UCLA, also emphasizes that the first-screen result strongly suggests that CT lung cancer screening programs with radiologists who possess similar expertise and interpret similar numbers of CT cases that are obtained on scanners of the same caliber or better as those required for the NLST are likely to have results similar to those reported in the paper.

"What we've learned from the analysis of the first-screen results provides clinicians additional facts to discuss with patients who share similar characteristics as the NLST participants (current or former heavy smokers over the age of 55)", says Church. "The results also caution against making blanket lung cancer screening recommendations, because each person's trade-off between the risk of having an unnecessary procedure and the fear of dying of lung cancer is uniquely individual."

"Today's publication represents the type of immensely important data NLST will continue to provide about lung cancer screening in the United States," says Mitchell J. Schnall, M.D., Ph.D., ACRIN Network Chair, group co-chair of the ECOG-ACRIN Cancer Research Group and chair of the Radiology Department of the University of Pennsylvania. "I congratulate the NLST team on its ongoing effort to continue to mine information from the NLST trial to help guide patient, clinician and health care policy decisions."

About ECOG-ACRIN

The ECOG-ACRIN Cancer Research Group designs and conducts biomarker-driven cancer research involving adults who have or are at risk of developing cancer. ECOG-ACRIN was formed in May 2012 by the merger of the Eastern Cooperative Oncology Group (ECOG) and the oncology program of the American College of Radiology Imaging Network (ACRIN). ECOG-ACRIN has integrated therapeutic and diagnostic imaging-based research disciplines with the latest bioinformatics technologies into a single scientific organization. With its capacity to explore integral biomarkers, including imaging markers of response and prognosis, ECOG-ACRIN is poised to achieve patient-centered research breakthroughs across the cancer care continuum, from prevention and screening through the treatment of metastatic disease. For more information, visit http://www.ecog-acrin.org.

About ACRIN

ACRIN engages a global network of investigators dedicated to advancing the practice of medical imaging through the conduct of multicenter clinical trials that deliver critical information to improve patient care. The network's imaging research encompasses a broad range of disease types including cardiovascular, neurological, and oncologic and imaging modalities including advanced MRI and CT, PET with novel radiotracers and new technology such as tomosynthesis. ACRIN is administered by the American College of Radiology and is headquartered at the ACR Clinical Research Center in Philadelphia, PA. The ACRIN Biostatistics Center is located at Brown University in Providence, RI. http://www.acrin.org

Shawn Farley | EurekAlert!
Further information:
http://www.acr.org
http://www.ecog-acrin.org

More articles from Medical Engineering:

nachricht 'Memtransistor' brings world closer to brain-like computing
22.02.2018 | Northwestern University

nachricht MRI technique differentiates benign breast lesions from malignancies
20.02.2018 | Radiological Society of North America

All articles from Medical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Developing reliable quantum computers

International research team makes important step on the path to solving certification problems

Quantum computers may one day solve algorithmic problems which even the biggest supercomputers today can’t manage. But how do you test a quantum computer to...

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Basque researchers turn light upside down

23.02.2018 | Physics and Astronomy

Finnish research group discovers a new immune system regulator

23.02.2018 | Health and Medicine

Attoseconds break into atomic interior

23.02.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>