Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

CSHL team introduces automated imaging to greatly speed whole-brain mapping efforts

16.01.2012
A new technology developed by neuroscientists at Cold Spring Harbor Laboratory (CSHL) transforms the way highly detailed anatomical images can be made of whole brains. Until now, means of obtaining such images – used in cutting-edge projects to map the mammalian brain -- have been painstakingly slow and available only to a handful of highly specialized research teams.

By automating and standardizing the process in which brain samples are divided into sections and then imaged sequentially at precise spatial orientations in two-photon microscopes, the team, led by Assoc. Prof. Pavel Osten and consisting of scientists from his CSHL lab and the Massachusetts Institute of Technology, has opened the door to making whole-brain mapping routine.

Specifically, says Osten, "the new technology should greatly facilitate the systematic study of neuroanatomy in mouse models of human brain disorders such as schizophrenia and autism."

The new technology, developed in concert with TissueVision of Cambridge, Mass. and reported on in a paper appearing online Jan. 15 in Nature Methods, is called Serial Two-Photon Tomography, or STP tomography. Tomography refers to any process (including the familiar CAT and PET scans used in medical diagnostics) that images an object section by section, by shooting penetrating waves through it. Computers powered by mathematical formulae reassemble the results to produce a three-dimensional rendering. Two-photon imaging is a type used in biology laboratories, particularly in conjunction with fluorescent biomarkers, which can be mobilized to illuminate specific cell types or other anatomical features. The two-photon method allows deeper optical penetration into the tissue being sampled than conventional confocal microscopy.

As Osten explains, STP tomography achieves high-throughput fluorescence imaging of whole mouse brains via robotic integration of the two fundamental steps -- tissue sectioning and fluorescence imaging. In their paper, his team reports on the results of several mouse-brain imaging experiments, which indicate the uses and sensitivity of the new tool. They conclude that it is sufficiently mature to be used in whole-brain mapping efforts such as the ongoing Allen Mouse Brain Atlas project.

One set of experiments tested the technology at different levels of resolution. At 10x magnification of brain tissue samples, they performed fast imaging "at a resolution sufficient to visualize the distribution and morphology of green-fluorescent protein-labeled neurons, including their dendrites and axons," Osten reports.

A full set of data, including final images, could be obtained by the team in 6.5 to 8.5 hours per brain, depending on the resolution. These sets each were comprised of 260 top-to-bottom, or coronal, slices of mouse brain tissue, which were assembled by computer into three-dimensional renderings themselves capable of a wide range of "warping," i.e., artificial manipulation, to reveal hidden structures and features.

"The technology is a practical one that can be used for scanning at various levels of resolution, ranging from 1 to 2 microns to less than a micron," Osten says. Scans at the highest resolution level take about 24 hours to collect. This makes possible an impressive saving of time, Osten says, compared to methods that are now in use. Using these, it would take an experienced technician about a week to collect a set of whole-brain images at high resolution, he noted.

"What is most exciting about this tool is its application in the study of mouse models of human illness, which we are already doing in my lab," Osten says. "We are focusing on making comparisons between different mouse models of schizophrenia and autism. Many susceptibility genes have been identified in both disorders – one recent estimate by Dr. Mike Wigler's team here at CSHL put the figure at over 250 for autism spectrum disorders, for instance. Dr. Alea Mills at CSHL has published a mouse model of one genetic aberration in autism – a region on chromosome 16 – and soon we will have tens of models, each showing a different aberration.

"We will want to compare these mice, and that is essentially why we designed STP tomography – to automate and standardize the process of collecting whole-brain images in which different cell-types or circuit tracings have been performed. This makes possible comparisons across different mouse models in an unbiased fashion."

"Serial two-photon tomography: an automated method for mouse brain imaging" appears online in Nature Methods on January 15, 2012. The authors are: Timothy Ragan, Lolahon R Kadiri, Kannan Umadevi Venkataraju, Karsten Bahlmann, Jason Sutin, Julian Taranda, Ignacio Arganda-Carreras, Yongsoo Kim, H Sebastian Seung and Pavel Osten. the paper can be obtained online at http://www.nature.com/nmeth/index.html

This research was supported by grants from: The Simons Foundation, The McKnight Foundation, the Howard Hughes Medical Institute, and the National Institutes of Health.

About Cold Spring Harbor Laboratory

Founded in 1890, Cold Spring Harbor Laboratory (CSHL) has shaped contemporary biomedical research and education with programs in cancer, neuroscience, plant biology and quantitative biology. CSHL is ranked number one in the world by Thomson Reuters for impact of its research in molecular biology and genetics. The Laboratory has been home to eight Nobel Prize winners. Today, CSHL's multidisciplinary scientific community is more than 350 scientists strong and its Meetings & Courses program hosts more than 11,000 scientists from around the world each year. Tens of thousands more benefit from the research, reviews, and ideas published in journals and books distributed internationally by CSHL Press. The Laboratory's education arm also includes a graduate school and programs for undergraduates as well as middle and high school students and teachers. CSHL is a private, not-for-profit institution on the north shore of Long Island. For more information, visit www.cshl.edu.

Peter Tarr | EurekAlert!
Further information:
http://www.cshl.edu

More articles from Medical Engineering:

nachricht Penn first in world to treat patient with new radiation technology
22.09.2017 | University of Pennsylvania School of Medicine

nachricht Skin patch dissolves 'love handles' in mice
18.09.2017 | Columbia University Medical Center

All articles from Medical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Rainbow colors reveal cell history: Uncovering β-cell heterogeneity

22.09.2017 | Life Sciences

Penn first in world to treat patient with new radiation technology

22.09.2017 | Medical Engineering

Calculating quietness

22.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>