Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Computer model suggests genetic breast cancer screening may benefit those at intermediate risk

05.12.2013
Study findings published in Cancer Prevention Research underscore viability of simulation modeling to stratify patients by disease risk to better focus resources where most beneficial

Archimedes Inc., a healthcare modeling and analytics company, today announced results of a simulated clinical trial which found that the seven single-nucleotide polymorphisms (7SNP) genetic test for breast cancer was most cost effective when used to guide MRI screenings for patients found to have an intermediate lifetime risk of developing the disease.

The study, "Cost-effectiveness of a genetic test for breast cancer risk," appeared in the December 5th online issue of the peer-reviewed journal Cancer Prevention Research.

"This Archimedes Model simulation suggests that genetic screening for breast cancer risk in conjunction with MRI can reduce cancer deaths and identifies a population at an intermediate risk near 20 percent for which it is optimally cost effective," said Tuan Dinh, PhD, vice president of analytics and modeling at Archimedes and one of the authors of study. "This study further illustrates that risk modeling may provide information that will enable physicians to better determine a patient's risk of disease and more appropriately allocate resources that will be beneficial."

In 2007, the American Cancer Society recommended MRI as an adjunct to mammography for the screening of breast cancer in women who have a lifetime risk of breast cancer of approximately 20-25 percent or greater as determined by models based on family history such as the Gail test. In the virtual study, researchers used Archimedes' detailed simulation model of breast cancer risk factors, disease progression, and healthcare processes to estimate the costs and benefits of using genetic testing to refine estimates of risk for purposes of referring women to MRI screening. The simulation included growth, detection, and spread of tumors, as well as screening and treatment.

The model compared two tests to categorize patients by lifetime risk, the Gail risk test and the 7SNP test. The Gail model, which is widely used by the National Cancer Institute, estimates risk using information on age, race, family history, and age of menarche and first live birth. The 7SNP genetic test uses the genotype of the patient to refine the estimate of the Gail test. In the simulated study, average-risk patients received an annual mammogram and high-risk patients received an annual MRI.

The simulated population consisted of 100,000 non-Hispanic white women starting at the age of 40 with no prior history of cancer and a lifetime Gail risk of breast cancer of at least 10 percent. Cancer incidence was based on Surveillance, Epidemiology, and End Results (SEER) data and validated to the Cancer Prevention Study II (CPS-II) Nutrition Cohort dataset. Risk factors were drawn from the National Health and Nutrition Examination Survey (NHANES-4) and Prostate, Lung, Colorectal, and Ovarian Cancer Screening Trial data. Mammogram characteristics were derived from Breast Cancer Surveillance Consortium data.

For patients with a lifetime risk of at least 10 percent, the model showed that the 7SNP test results in a 2.7 percent reduction in cancer deaths relative to the Gail test alone. For patients with a risk of 16-28 percent, the 7SNP test saved 0.005 quality-adjusted life years (QALY) per person at a cost of $163,264 per QALY. The cost effectiveness of using the 7SNP test for patients with intermediate Gail risk is similar to that of other recommended strategies, including annual MRI for patients with a lifetime risk greater than 20 percent or BRCA1/2 mutations, for which the model estimated a cost of $141,415 per QALY, relative to mammogram.

"These findings may help physicians and their patients as they strive to identify optimal breast cancer screening options for individual women based on their current risk profile," added Dr. Henri Folse, lead author of the study. "In addition, investigators can use mathematical modeling and cost-effectiveness analyses, such as those described in this study, to identify an optimal range of risk for which prevention and screening strategies are most cost effective."

This study was a collaborative project between Archimedes and Genetic Technologies Ltd.

ABOUT ARCHIMEDES

Archimedes, Inc. is a healthcare modeling and analytics organization. Its core technology - the Archimedes Model - is a clinically realistic, mathematical model of human physiology, diseases, interventions, and healthcare systems. Archimedes continually validates the Model by comparing the results of simulated trials to the results of multinational clinical trials and cohort studies. Through products such as IndiGO and ARCHeS, Archimedes helps people understand the implications of their decisions. For the last 15 years, Archimedes has assisted health plans, health systems, medical groups, patients, pharmaceutical companies, researchers, and other organizations in the United States and Europe answer questions related to health and economic outcomes research, policy creation, clinical trial design, and performance improvement. Archimedes, a Kaiser Permanente Innovation, is based in San Francisco, California. For more information about Archimedes and its product offerings, please visit the company's website at http://www.archimedesmodel.com
Media Contact:
Edie DeVine
GCI Health for Archimedes
edie.devine@gcihealth.com
415-365-8543

Kerry Sinclair | EurekAlert!
Further information:
http://www.gcihealth.com

More articles from Medical Engineering:

nachricht New technique makes brain scans better
22.06.2017 | Massachusetts Institute of Technology

nachricht New technology enables effective simultaneous testing for multiple blood-borne pathogens
13.06.2017 | Elsevier

All articles from Medical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Quantum thermometer or optical refrigerator?

23.06.2017 | Physics and Astronomy

A 100-year-old physics problem has been solved at EPFL

23.06.2017 | Physics and Astronomy

Equipping form with function

23.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>