Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Computer-assisted diagnosis tools to aid pathologists

01.02.2011
Process yields higher throughput; quicker, more-consistent diagnoses

Researchers are leveraging Ohio Supercomputer Center resources to develop computer-assisted diagnosis tools that will provide pathologists grading Follicular Lymphoma samples with quicker, more consistently accurate diagnoses.

“The advent of digital whole-slide scanners in recent years has spurred a revolution in imaging technology for histopathology,” according to Metin N. Gurcan, Ph.D., an associate professor of Biomedical Informatics at The Ohio State University Medical Center. “The large multi-gigapixel images produced by these scanners contain a wealth of information potentially useful for computer-assisted disease diagnosis, grading and prognosis.”

Follicular Lymphoma (FL) is one of the most common forms of non-Hodgkin Lymphoma occurring in the United States. FL is a cancer of the human lymph system that usually spreads into the blood, bone marrow and, eventually, internal organs.

A World Health Organization pathological grading system is applied to biopsy samples; doctors usually avoid prescribing severe therapies for lower grades, while they usually recommend radiation and chemotherapy regimens for more aggressive grades.

Accurate grading of the pathological samples generally leads to a promising prognosis, but diagnosis depends solely upon a labor-intensive process that can be affected by human factors such as fatigue, reader variation and bias. Pathologists must visually examine and grade the specimens through high-powered microscopes.

Processing and analysis of such high-resolution images, Gurcan points out, remain non-trivial tasks, not just because of the sheer size of the images, but also due to complexities of underlying factors involving differences in staining, illumination, instrumentation and goals.

To overcome many of these obstacles to automation, Gurcan and medical center colleagues, Dr. Gerard Lozanski and Dr. Arwa Shana’ah, turned to the Ohio Supercomputer Center.

Ashok Krishnamurthy, Ph.D., interim co-executive director of the center, and Siddharth Samsi, a computational science researcher there and an OSU graduate student in Electrical and Computer Engineering, put the power of a supercomputer behind the process.

“Our group has been developing tools for grading of follicular lymphoma with promising results,” said Samsi. “We developed a new automated method for detecting lymph follicles using stained tissue by analyzing the morphological and textural features of the images, mimicking the process that a human expert might use to identify follicle regions. Using these results, we developed models to describe tissue histology for classification of FL grades.”

Histological grading of FL is based on the number of large malignant cells counted in within tissue samples measuring just 0.159 square millimeters and taken from ten different locations. Based on these findings, FL is assigned to one of three increasing grades of malignancy: Grade I (0-5 cells), Grade II (6-15 cells) and Grade III (more than 15 cells).

“The first step involves identifying potentially malignant regions by combining color and texture features,” Samsi explained. “The second step applies an iterative watershed algorithm to separate merged regions and the final step involves eliminating false positives.”

The large data sizes and complexity of the algorithms led Gurcan and Samsi to leverage the parallel computing resources of OSC’s Glenn Cluster in order to reduce the time required to process the images. They used MATLAB® and the Parallel Computing Toolbox™ to achieve significant speed-ups. Speed is the goal of the National Cancer Institute-funded research project, but accuracy is essential. Gurcan and Samsi compared their computer segmentation results with manual segmentation and found an average similarity score of 87.11 percent.

“This algorithm is the first crucial step in a computer-aided grading system for Follicular Lymphoma,” Gurcan said. “By identifying all the follicles in a digitized image, we can use the entire tissue section for grading of the disease, thus providing experts with another tool that can help improve the accuracy and speed of the diagnosis.”

Contact:
Kathryn Kelley, Director of Outreach, Ohio Supercomputer Center, 614-292-6067, kkelley@osc.edu
Jamie Abel, Communications and Media Director, Ohio Supercomputer Center, 614-292-6495, jabel@osc.edu

Jamie Abel | Ohio State University
Further information:
http://www.osc.edu

More articles from Medical Engineering:

nachricht A Challenging European Research Project to Develop New Tiny Microscopes
28.03.2017 | Technische Universität Braunschweig

nachricht 3-D visualization of the pancreas -- new tool in diabetes research
15.03.2017 | Umea University

All articles from Medical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Chlamydia: How bacteria take over control

28.03.2017 | Life Sciences

A Challenging European Research Project to Develop New Tiny Microscopes

28.03.2017 | Medical Engineering

Northern oceans pumped CO2 into the atmosphere

27.03.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>