Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Combined arterial imaging technology reveals both structural and metabolic details

07.11.2011
Dual imaging approach could improve diagnosis, treatment of coronary artery disease

A new device that combines two microimaging technologies can reveal both the detailed anatomy of arterial linings and biological activities that, in coronary arteries, could indicate the risk of heart attacks or the formation of clots in arterial stents.

In their report receiving early online release in Nature Medicine, Massachusetts General Hospital (MGH) investigators describe using an intra-arterial catheter combining both optical frequency-domain imaging (OFDI) and near-infrared fluorescence (NIRF) imaging to obtain simultaneous structural and molecular images of internal arterial surfaces in rabbits.

"The ability to measure both microstructural and molecular information from the same location in the artery wall could provide a much better diagnostic tool for assessing vascular pathology, information that is highly relevant for diagnosing coronary artery disease, vulnerable plaque and evaluating stent healing," says Gary Tearney, MD, PhD, of the Wellman Center for Photomedicine and the MGH Pathology Department, co-senior author of the article.

Developed at the Wellman Center, OFDI utilizes a fiberoptic probe with a constantly rotating laser tip to create detailed molecular images of interior surfaces such as arterial walls. While OFDI can be used to guide procedures like coronary artery angioplasty and to confirm the correct positioning of metal stents inserted to keep cleared arteries open, its ability to determine important details of stent healing is limited. Properly healed stents become covered with endothelium, the same tissue that normally coats the arterial surface; but stents can become coated with the clot-inducing protein fibrin, which may put patients at risk for stent thrombosis – a clot that blocks bloodflow through the stent – and OFDI cannot determine the molecular composition of tissue covering a stent.

Intravascular NIRF technology was developed in the MGH Cardiovascular Research Center (CVRC), in collaboration with colleagues at the Technical University of Munich, and uses special imaging agents to detect cells and molecules involved in vascular processes like clotting and inflammation. Recognizing the potential advantage of combining both technologies, the Wellman researchers worked with the MGH-CVRC team, led by Farouc Jaffer, MD, PhD, of the MGH Heart Center to develop an integrated OFDI-NIRF imaging system incorporated in the same intravascular probe used for OFDI alone.

The team first confirmed that the system could provide detailed structural images of a stent implanted in a cadaveric human coronary artery and could accurately identify the presence of fibrin on the stent. In a series of experiments in living rabbits, the OFDI-NIRF system was able to detect fibrin on implanted stents – including areas where it was not detected by OFDI alone – and to identify the presence of both atherosclerotic plaques and enzymatic activity associated with inflammation and plaque rupture. The enzyme signal detected by NIRF was not uniform throughout the imaged plaques, indicating biological differences that could be relevant to prognosis and treatment planning.

"At present we are not able to predict which patients may develop stent thrombosis, but integrated OFDI-NIRF can assess many key factors linked to the risk of clot formation," says Jaffer, co-senior author of the Nature Medicine report. "If OFDI-NIRF is validated in clinical studies, patients at risk for stent thrombosis could undergo a 'stent checkup' to determine how well the stent is healing. Patients with unhealed stents could be advised to take or continue taking specific anti-clotting medications. Patients with well-healed stents, on the other hand, could potentially discontinue anti-clotting medications, which can cause excess bleeding." Clinical adoption of the integrated technology will require FDA approval of the molecular contrast agents used in NIRF.

Tearney is a professor of Pathology and Jaffer an assistant professor of Medicine at Harvard Medical School. Hongki Yoo, PhD, of the MGH Wellman Center and Jin Won Kim, MD, PhD, MGH Cardiovascular Research Center, are co-lead authors of the Nature Medicine report. Additional co-authors are Milen Shishkov, PhD, Eman Namati, PhD, and Brett Bouma, PhD, Wellman Center; Jason McCarthy, PhD, MGH Center for Systems Biology; Theodore Morse, PhD, and Roman Shubochkin, PhD, Boston University Photonics Center; and Vasilis Ntziachristos, PhD, Technical University of Munich.

The study was supported by grants from the National Institutes of Health, the Center for Integration of Medicine and Innovative Technology, the American Heart Association, Howard Hughes Medical Institute and the CardioVascular Research Foundation. Massachusetts General Hospital has filed patent applications on the combined OFDI and NIRF technology.

Celebrating the 200th anniversary of its founding in 1811, Massachusetts General Hospital (http://www.massgeneral.org) is the original and largest teaching hospital of Harvard Medical School. MGH conducts the largest hospital-based research program in the United States, with an annual research budget of nearly $700 million and major research centers in AIDS, cardiovascular research, cancer, computational and integrative biology, cutaneous biology, human genetics, medical imaging, neurodegenerative disorders, regenerative medicine, reproductive biology, systems biology, transplantation biology and photomedicine.

Sue McGreevey | EurekAlert!
Further information:
http://www.massgeneral.org

More articles from Medical Engineering:

nachricht Visualizing gene expression with MRI
23.12.2016 | California Institute of Technology

nachricht Illuminating cancer: Researchers invent a pH threshold sensor to improve cancer surgery
21.12.2016 | UT Southwestern Medical Center

All articles from Medical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

New Study Will Help Find the Best Locations for Thermal Power Stations in Iceland

19.01.2017 | Earth Sciences

Not of Divided Mind

19.01.2017 | Life Sciences

Molecule flash mob

19.01.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>