Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Clinical proof – Siemens' Artis Q.zen minimizes dose in cardiology

02.09.2013
- Significant dose reductions in electrophysiological examinations and interventional cardiology
- Angiography system with unique x-ray tube and detector

The new Artis Q.zen angiography system from Siemens has proven itself in everyday clinical practice. The system has been in use since November 2012 at the Basel University Hospital in Switzerland where both patients and staff benefit from the low radiation dose that an entirely novel technology has made possible.



"My team spends about three to four hours a day in the Electrophysiology Laboratory (EP) in connection with about eight to ten operations. This is why reducing the dose is so important," says Prof. Stefan Osswald, head of the cardiology department. With Artis Q.zen, Siemens is demonstrating its innovative strength as part of the global "Agenda 2013" Sector initiative.

Studies show that on average one in four people suffer from atrial fibrillation, the most widespread form of cardiac arrhythmia, at some stage during their lives. A further increase can be expected as a result of demographic change. Electrophysiological studies and interventions can be used to examine and treat a large number of patients. This involves ablating tiny points in the myocardial tissue using an ablation catheter in order to return the heart to its correct rhythm. Depending on the level of complexity, this type of procedure can take two to three hours. Each misrouting of the electrical impulses that trigger cardiac arrhythmia, which is measured in milliseconds, must first be located and mapped using electrophysiology catheters. It is only at that point that the doctor can develop an individual treatment plan tailored to the patients' needs. Prof. Osswald has been working with Artis Q.zen since November 2012. "We can now manage with radiation doses that are up to 85 percent below usual values," he says. This benefits both patients and staff alike.

In addition to cardiac arrhythmia, there is another clinical picture in the field of cardiology that is on the rise, and is the most frequent cause of death in the industrialized nations: coronary heart disease. This involves narrowing and blockage of the arteries supplying blood to the heart muscle. In Europe alone, over 1.8 million people die of this chronic disease each year. Narrowings – known as stenoses – can be widened using balloon catheters to restore the flow of blood. Stents keep the constricted locations permanently open. During this procedure, known as percutaneous coronary intervention (PCI), the cardiologist has to position the stent with millimeter precision despite cardiac movement. Using Artis Q.zen, the cardiologist is supported by the advanced guidance of Clearstent Live. With Clearstent Live, stent enhancement takes place in real time. The software eliminates cardiac movement, allowing cardiologists to verify stent positioning relative to the cardiac anatomy or to previously deployed stents. The enhanced images are displayed side-by-side with the current live-image without any noticeable lag and while the operator can still move the balloon mounted stent. In interventions of this nature, Prof. Osswald has observed a clear reduction in dose compared to the previous model, up to 50 percent. "The main advantage is the massively better visualization of the stent and the respective vessel-section. Hence, additional images to decide whether the stent has been fully expanded are no longer necessary," says Prof. Osswald.

Introduced by Siemens during the Radiological Society of North America (RSNA) congress last year, the Artis Q.zen comes with two new advances making it possible to reduce the radiation dose while maintaining and improving the quality – a new x-ray tube and a new detector. The x-ray tube is the only one on the market exclusively equipped with "flat emitter" technology. The new tube permits the system to generate detailed images of moving objects and even the smallest vessels in a beating heart within a very short time at a maximum current of 1,000 milliamperes (mA). The new technology delivers a more richly detailed image for the subsequent treatment.

The new Artis Q.zen detector enables x-ray checks to be performed in the ultra-low dose range, i.e. 20 nanograys (nGy) or less. What is new and unique worldwide is the fact that the detector is based on crystalline rather than on amorphous silicon technology. This is a material of homogenous chemical structure used mainly in the solar industry. It ensures that the image signal is enhanced with substantially reduced electronic noise in the image. This means that the cardiologist can achieve the same image quality using a lower dose.

Follow us on Twitter: www.twitter.com/siemens_press

The Siemens Healthcare Sector is one of the world's largest suppliers to the healthcare industry and a trendsetter in medical imaging, laboratory diagnostics, medical information technology and hearing aids. Siemens offers its customers products and solutions for the entire range of patient care from a single source – from prevention and early detection to diagnosis, and on to treatment and aftercare. By optimizing clinical workflows for the most common diseases, Siemens also makes healthcare faster, better and more cost-effective. Siemens Healthcare employs some 51,000 employees worldwide and operates around the world. In fiscal year 2012 (to September 30), the Sector posted revenue of 13.6 billion euros and profit of 1.8 billion euros. For further information please visit: http://www.siemens.com/healthcare

The products/features (here mentioned) are not commercially available in all countries. Due to regulatory reasons their future availability cannot be guaranteed. Please contact your local Siemens organization for further details.

The statements by Siemens' customers described herein are based on results that were achieved in the customer's unique setting. Since there is no "typical" hospital and many variables exist (e.g., hospital size, case mix, level of IT adoption) there can be no guarantee that other customers will achieve the same results.

Reference Number: HIM201308020e

Contact
Ms. Kathrin Schmich
Healthcare Sector
Siemens AG
Henkestr. 127
91052 Erlangen
Germany
Tel: +49 (9131) 84-5337
Kathrin.Schmich​@siemens.com

Kathrin Schmich | Siemens Healthcare
Further information:
http://www.siemens.com/presse/esc2013

More articles from Medical Engineering:

nachricht Penn first in world to treat patient with new radiation technology
22.09.2017 | University of Pennsylvania School of Medicine

nachricht Skin patch dissolves 'love handles' in mice
18.09.2017 | Columbia University Medical Center

All articles from Medical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Rainbow colors reveal cell history: Uncovering β-cell heterogeneity

22.09.2017 | Life Sciences

Penn first in world to treat patient with new radiation technology

22.09.2017 | Medical Engineering

Calculating quietness

22.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>