Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Clinical proof – Siemens' Artis Q.zen minimizes dose in cardiology

02.09.2013
- Significant dose reductions in electrophysiological examinations and interventional cardiology
- Angiography system with unique x-ray tube and detector

The new Artis Q.zen angiography system from Siemens has proven itself in everyday clinical practice. The system has been in use since November 2012 at the Basel University Hospital in Switzerland where both patients and staff benefit from the low radiation dose that an entirely novel technology has made possible.



"My team spends about three to four hours a day in the Electrophysiology Laboratory (EP) in connection with about eight to ten operations. This is why reducing the dose is so important," says Prof. Stefan Osswald, head of the cardiology department. With Artis Q.zen, Siemens is demonstrating its innovative strength as part of the global "Agenda 2013" Sector initiative.

Studies show that on average one in four people suffer from atrial fibrillation, the most widespread form of cardiac arrhythmia, at some stage during their lives. A further increase can be expected as a result of demographic change. Electrophysiological studies and interventions can be used to examine and treat a large number of patients. This involves ablating tiny points in the myocardial tissue using an ablation catheter in order to return the heart to its correct rhythm. Depending on the level of complexity, this type of procedure can take two to three hours. Each misrouting of the electrical impulses that trigger cardiac arrhythmia, which is measured in milliseconds, must first be located and mapped using electrophysiology catheters. It is only at that point that the doctor can develop an individual treatment plan tailored to the patients' needs. Prof. Osswald has been working with Artis Q.zen since November 2012. "We can now manage with radiation doses that are up to 85 percent below usual values," he says. This benefits both patients and staff alike.

In addition to cardiac arrhythmia, there is another clinical picture in the field of cardiology that is on the rise, and is the most frequent cause of death in the industrialized nations: coronary heart disease. This involves narrowing and blockage of the arteries supplying blood to the heart muscle. In Europe alone, over 1.8 million people die of this chronic disease each year. Narrowings – known as stenoses – can be widened using balloon catheters to restore the flow of blood. Stents keep the constricted locations permanently open. During this procedure, known as percutaneous coronary intervention (PCI), the cardiologist has to position the stent with millimeter precision despite cardiac movement. Using Artis Q.zen, the cardiologist is supported by the advanced guidance of Clearstent Live. With Clearstent Live, stent enhancement takes place in real time. The software eliminates cardiac movement, allowing cardiologists to verify stent positioning relative to the cardiac anatomy or to previously deployed stents. The enhanced images are displayed side-by-side with the current live-image without any noticeable lag and while the operator can still move the balloon mounted stent. In interventions of this nature, Prof. Osswald has observed a clear reduction in dose compared to the previous model, up to 50 percent. "The main advantage is the massively better visualization of the stent and the respective vessel-section. Hence, additional images to decide whether the stent has been fully expanded are no longer necessary," says Prof. Osswald.

Introduced by Siemens during the Radiological Society of North America (RSNA) congress last year, the Artis Q.zen comes with two new advances making it possible to reduce the radiation dose while maintaining and improving the quality – a new x-ray tube and a new detector. The x-ray tube is the only one on the market exclusively equipped with "flat emitter" technology. The new tube permits the system to generate detailed images of moving objects and even the smallest vessels in a beating heart within a very short time at a maximum current of 1,000 milliamperes (mA). The new technology delivers a more richly detailed image for the subsequent treatment.

The new Artis Q.zen detector enables x-ray checks to be performed in the ultra-low dose range, i.e. 20 nanograys (nGy) or less. What is new and unique worldwide is the fact that the detector is based on crystalline rather than on amorphous silicon technology. This is a material of homogenous chemical structure used mainly in the solar industry. It ensures that the image signal is enhanced with substantially reduced electronic noise in the image. This means that the cardiologist can achieve the same image quality using a lower dose.

Follow us on Twitter: www.twitter.com/siemens_press

The Siemens Healthcare Sector is one of the world's largest suppliers to the healthcare industry and a trendsetter in medical imaging, laboratory diagnostics, medical information technology and hearing aids. Siemens offers its customers products and solutions for the entire range of patient care from a single source – from prevention and early detection to diagnosis, and on to treatment and aftercare. By optimizing clinical workflows for the most common diseases, Siemens also makes healthcare faster, better and more cost-effective. Siemens Healthcare employs some 51,000 employees worldwide and operates around the world. In fiscal year 2012 (to September 30), the Sector posted revenue of 13.6 billion euros and profit of 1.8 billion euros. For further information please visit: http://www.siemens.com/healthcare

The products/features (here mentioned) are not commercially available in all countries. Due to regulatory reasons their future availability cannot be guaranteed. Please contact your local Siemens organization for further details.

The statements by Siemens' customers described herein are based on results that were achieved in the customer's unique setting. Since there is no "typical" hospital and many variables exist (e.g., hospital size, case mix, level of IT adoption) there can be no guarantee that other customers will achieve the same results.

Reference Number: HIM201308020e

Contact
Ms. Kathrin Schmich
Healthcare Sector
Siemens AG
Henkestr. 127
91052 Erlangen
Germany
Tel: +49 (9131) 84-5337
Kathrin.Schmich​@siemens.com

Kathrin Schmich | Siemens Healthcare
Further information:
http://www.siemens.com/presse/esc2013

More articles from Medical Engineering:

nachricht Visualizing gene expression with MRI
23.12.2016 | California Institute of Technology

nachricht Illuminating cancer: Researchers invent a pH threshold sensor to improve cancer surgery
21.12.2016 | UT Southwestern Medical Center

All articles from Medical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>