Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Clinical proof – Siemens' Artis Q.zen minimizes dose in cardiology

02.09.2013
- Significant dose reductions in electrophysiological examinations and interventional cardiology
- Angiography system with unique x-ray tube and detector

The new Artis Q.zen angiography system from Siemens has proven itself in everyday clinical practice. The system has been in use since November 2012 at the Basel University Hospital in Switzerland where both patients and staff benefit from the low radiation dose that an entirely novel technology has made possible.



"My team spends about three to four hours a day in the Electrophysiology Laboratory (EP) in connection with about eight to ten operations. This is why reducing the dose is so important," says Prof. Stefan Osswald, head of the cardiology department. With Artis Q.zen, Siemens is demonstrating its innovative strength as part of the global "Agenda 2013" Sector initiative.

Studies show that on average one in four people suffer from atrial fibrillation, the most widespread form of cardiac arrhythmia, at some stage during their lives. A further increase can be expected as a result of demographic change. Electrophysiological studies and interventions can be used to examine and treat a large number of patients. This involves ablating tiny points in the myocardial tissue using an ablation catheter in order to return the heart to its correct rhythm. Depending on the level of complexity, this type of procedure can take two to three hours. Each misrouting of the electrical impulses that trigger cardiac arrhythmia, which is measured in milliseconds, must first be located and mapped using electrophysiology catheters. It is only at that point that the doctor can develop an individual treatment plan tailored to the patients' needs. Prof. Osswald has been working with Artis Q.zen since November 2012. "We can now manage with radiation doses that are up to 85 percent below usual values," he says. This benefits both patients and staff alike.

In addition to cardiac arrhythmia, there is another clinical picture in the field of cardiology that is on the rise, and is the most frequent cause of death in the industrialized nations: coronary heart disease. This involves narrowing and blockage of the arteries supplying blood to the heart muscle. In Europe alone, over 1.8 million people die of this chronic disease each year. Narrowings – known as stenoses – can be widened using balloon catheters to restore the flow of blood. Stents keep the constricted locations permanently open. During this procedure, known as percutaneous coronary intervention (PCI), the cardiologist has to position the stent with millimeter precision despite cardiac movement. Using Artis Q.zen, the cardiologist is supported by the advanced guidance of Clearstent Live. With Clearstent Live, stent enhancement takes place in real time. The software eliminates cardiac movement, allowing cardiologists to verify stent positioning relative to the cardiac anatomy or to previously deployed stents. The enhanced images are displayed side-by-side with the current live-image without any noticeable lag and while the operator can still move the balloon mounted stent. In interventions of this nature, Prof. Osswald has observed a clear reduction in dose compared to the previous model, up to 50 percent. "The main advantage is the massively better visualization of the stent and the respective vessel-section. Hence, additional images to decide whether the stent has been fully expanded are no longer necessary," says Prof. Osswald.

Introduced by Siemens during the Radiological Society of North America (RSNA) congress last year, the Artis Q.zen comes with two new advances making it possible to reduce the radiation dose while maintaining and improving the quality – a new x-ray tube and a new detector. The x-ray tube is the only one on the market exclusively equipped with "flat emitter" technology. The new tube permits the system to generate detailed images of moving objects and even the smallest vessels in a beating heart within a very short time at a maximum current of 1,000 milliamperes (mA). The new technology delivers a more richly detailed image for the subsequent treatment.

The new Artis Q.zen detector enables x-ray checks to be performed in the ultra-low dose range, i.e. 20 nanograys (nGy) or less. What is new and unique worldwide is the fact that the detector is based on crystalline rather than on amorphous silicon technology. This is a material of homogenous chemical structure used mainly in the solar industry. It ensures that the image signal is enhanced with substantially reduced electronic noise in the image. This means that the cardiologist can achieve the same image quality using a lower dose.

Follow us on Twitter: www.twitter.com/siemens_press

The Siemens Healthcare Sector is one of the world's largest suppliers to the healthcare industry and a trendsetter in medical imaging, laboratory diagnostics, medical information technology and hearing aids. Siemens offers its customers products and solutions for the entire range of patient care from a single source – from prevention and early detection to diagnosis, and on to treatment and aftercare. By optimizing clinical workflows for the most common diseases, Siemens also makes healthcare faster, better and more cost-effective. Siemens Healthcare employs some 51,000 employees worldwide and operates around the world. In fiscal year 2012 (to September 30), the Sector posted revenue of 13.6 billion euros and profit of 1.8 billion euros. For further information please visit: http://www.siemens.com/healthcare

The products/features (here mentioned) are not commercially available in all countries. Due to regulatory reasons their future availability cannot be guaranteed. Please contact your local Siemens organization for further details.

The statements by Siemens' customers described herein are based on results that were achieved in the customer's unique setting. Since there is no "typical" hospital and many variables exist (e.g., hospital size, case mix, level of IT adoption) there can be no guarantee that other customers will achieve the same results.

Reference Number: HIM201308020e

Contact
Ms. Kathrin Schmich
Healthcare Sector
Siemens AG
Henkestr. 127
91052 Erlangen
Germany
Tel: +49 (9131) 84-5337
Kathrin.Schmich​@siemens.com

Kathrin Schmich | Siemens Healthcare
Further information:
http://www.siemens.com/presse/esc2013

More articles from Medical Engineering:

nachricht Why we need erasable MRI scans
26.04.2018 | California Institute of Technology

nachricht Electrode shape improves neurostimulation for small targets
25.04.2018 | Purdue University

All articles from Medical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Why we need erasable MRI scans

New technology could allow an MRI contrast agent to 'blink off,' helping doctors diagnose disease

Magnetic resonance imaging, or MRI, is a widely used medical tool for taking pictures of the insides of our body. One way to make MRI scans easier to read is...

Im Focus: BAM@Hannover Messe: innovative 3D printing method for space flight

At the Hannover Messe 2018, the Bundesanstalt für Materialforschung und-prüfung (BAM) will show how, in the future, astronauts could produce their own tools or spare parts in zero gravity using 3D printing. This will reduce, weight and transport costs for space missions. Visitors can experience the innovative additive manufacturing process live at the fair.

Powder-based additive manufacturing in zero gravity is the name of the project in which a component is produced by applying metallic powder layers and then...

Im Focus: Molecules Brilliantly Illuminated

Physicists at the Laboratory for Attosecond Physics, which is jointly run by Ludwig-Maximilians-Universität and the Max Planck Institute of Quantum Optics, have developed a high-power laser system that generates ultrashort pulses of light covering a large share of the mid-infrared spectrum. The researchers envisage a wide range of applications for the technology – in the early diagnosis of cancer, for instance.

Molecules are the building blocks of life. Like all other organisms, we are made of them. They control our biorhythm, and they can also reflect our state of...

Im Focus: Spider silk key to new bone-fixing composite

University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.

Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

World's smallest optical implantable biodevice

26.04.2018 | Power and Electrical Engineering

Molecular evolution: How the building blocks of life may form in space

26.04.2018 | Life Sciences

First Li-Fi-product with technology from Fraunhofer HHI launched in Japan

26.04.2018 | Power and Electrical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>