Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Chest CT helps predict cardiovascular disease risk


Incidental chest computed tomography (CT) findings can help identify individuals at risk for future heart attacks and other cardiovascular events, according to a new study published online in the journal Radiology.

"In addition to diagnostic purposes, chest CT can be used for the prediction of cardiovascular disease," said Pushpa M. Jairam, M.D., Ph.D., from the University Medical Center Utrecht, in Utrecht, the Netherlands. "With this study, we have taken a new perspective by providing a different approach for cardiovascular disease risk prediction strictly based on information readily available to the radiologist."

Here are examples of cardiovascular chest CT findings. A, Ascending thoracic aorta diameter measurement. B, Cardiac diameter measurement. C, Calcifications in the left anterior descending coronary artery and the descending thoracic aorta (arrows). D, Calcifications on the mitral valve (arrow).

Credit: Radiological Society of North America

Currently, individuals at high risk for cardiovascular events are identified through risk stratification tools based on conventional risk factors, such as age, gender, blood pressure, cholestorol levels, diabetes, smoking status or other factors thought to be related to heart disease. However, a substantial number of cardiovascular events occur in individuals with no conventional risk factors, or in patients with undetected or underdiagnosed risk factors.

"Extensive literature has clearly documented the uncertainty of prediction models based on conventional risk factors," Dr. Jairam said. "With this study, we address to some extent, the need for a shift in cardiovascular risk assessment from conventional risk factors to direct measures of subclinical atherosclerosis."

... more about:
»CT »Chest »RSNA »Radiological »conventional

Through the use of chest CT, radiologists are routinely confronted with findings that are unsuspected or unrelated to the CT indication, known as incidental findings. Incidental findings indicating early signs of atherosclerosis are quite common and could play a role in a population-based screening approach to identify individuals at high risk for cardiovascular events. However, there is currently no guidance on how to weigh these findings in routine practice.

Dr. Jairam and colleagues set out to develop and validate an imaging-based prediction model to more accurately assess the contribution of incidental findings on chest CT in detecting patients at high risk for cardiovascular disease.

The retrospective study looked at follow-up data from 10,410 patients who underwent diagnostic chest CT for non-cardiovascular indications. During a mean follow-up period of 3.7 years, 1,148 cardiovascular events occurred among these patients.

CT scans from these patients and from a random sampling of 10 percent of the remaining patients in the group were visually graded for several cardiovascular findings. The final prediction model included age, gender, CT indication, left anterior descending coronary artery calcifications, mitral valve calcifications, descending aorta calcifications and cardiac diameter. The model was found to have accurately placed individuals into clinically relevant risk categories.

The results showed that radiologic information may complement standard clinical strategies in cardiovascular risk screening and may improve diagnosis and treatment in eligible patients.

"Our study provides a novel strategy to detect patients at high risk for cardiovascular disease, irrespective of the conventional risk factor status, based on freely available incidental information from a routine diagnostic chest CT," Dr. Jairam said. "The resulting prediction rule may be used to assist clinicians to refer these patients for timely preventive cardiovascular risk management."

Dr. Jairam cautions that a prospective, multicenter trial is needed to validate the impact of these findings.


"Incidental Imaging Findings from Routine Chest CT Used to Identify Subjects at High Risk of Future Cardiovascular Events." Collaborating with Dr. Jairam were Martijn J.A. Gondrie, M.D., Ph.D., Diederick E. Grobbee, M.D., Ph.D., Willem P. Th. M. Mali, M.D., Ph.D., Peter C. A. Jacobs, M.D., Ph.D., and Yolanda van der Graaf, M.D., Ph.D.

This report is a part of the PROVIDI study and is funded by the Netherlands Organization for Scientific Research-Medical Sciences (NWO-MW).

Radiology is edited by Herbert Y. Kressel, M.D., Harvard Medical School, Boston, Mass., and owned and published by the Radiological Society of North America, Inc..

RSNA is an association of more than 53,000 radiologists, radiation oncologists, medical physicists and related scientists promoting excellence in patient care and health care delivery through education, research and technologic innovation. The Society is based in Oak Brook, Ill. (

For patient-friendly information on chest CT, visit

Linda Brooks | Eurek Alert!

Further reports about: CT Chest RSNA Radiological conventional

More articles from Medical Engineering:

nachricht New microscopy technology augments surgeon's view for greater accuracy
07.10.2015 | SPIE--International Society for Optics and Photonics

nachricht Infrared thermography can detect joint inflammation and help improving work ergonomics
02.10.2015 | University of Eastern Finland

All articles from Medical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Kick-off for a new era of precision astronomy

The MICADO camera, a first light instrument for the European Extremely Large Telescope (E-ELT), has entered a new phase in the project: by agreeing to a Memorandum of Understanding, the partners in Germany, France, the Netherlands, Austria, and Italy, have all confirmed their participation. Following this milestone, the project's transition into its preliminary design phase was approved at a kick-off meeting held in Vienna. Two weeks earlier, on September 18, the consortium and the European Southern Observatory (ESO), which is building the telescope, have signed the corresponding collaboration agreement.

As the first dedicated camera for the E-ELT, MICADO will equip the giant telescope with a capability for diffraction-limited imaging at near-infrared...

Im Focus: Locusts at the wheel: University of Graz investigates collision detector inspired by insect eyes

Self-driving cars will be on our streets in the foreseeable future. In Graz, research is currently dedicated to an innovative driver assistance system that takes over control if there is a danger of collision. It was nature that inspired Dr Manfred Hartbauer from the Institute of Zoology at the University of Graz: in dangerous traffic situations, migratory locusts react around ten times faster than humans. Working together with an interdisciplinary team, Hartbauer is investigating an affordable collision detector that is equipped with artificial locust eyes and can recognise potential crashes in time, during both day and night.

Inspired by insects

Im Focus: Physicists shrink particle accelerator

Prototype demonstrates feasibility of building terahertz accelerators

An interdisciplinary team of researchers has built the first prototype of a miniature particle accelerator that uses terahertz radiation instead of radio...

Im Focus: Simple detection of magnetic skyrmions

New physical effect: researchers discover a change of electrical resistance in magnetic whirls

At present, tiny magnetic whirls – so called skyrmions – are discussed as promising candidates for bits in future robust and compact data storage devices. At...

Im Focus: High-speed march through a layer of graphene

In cooperation with the Center for Nano-Optics of Georgia State University in Atlanta (USA), scientists of the Laboratory for Attosecond Physics of the Max Planck Institute of Quantum Optics and the Ludwig-Maximilians-Universität have made simulations of the processes that happen when a layer of carbon atoms is irradiated with strong laser light.

Electrons hit by strong laser pulses change their location on ultrashort timescales, i.e. within a couple of attoseconds (1 as = 10 to the minus 18 sec). In...

All Focus news of the innovation-report >>>



Event News

EHFG 2015: Securing healthcare and sustainably strengthening healthcare systems

01.10.2015 | Event News

Conference in Brussels: Tracking and Tracing the Smallest Marine Life Forms

30.09.2015 | Event News

World Alzheimer`s Day – Professor Willnow: Clearer Insights into the Development of the Disease

17.09.2015 | Event News

Latest News

New microscopy technology augments surgeon's view for greater accuracy

07.10.2015 | Medical Engineering

Discovery about new battery overturns decades of false assumptions

07.10.2015 | Power and Electrical Engineering

Ancient rocks record first evidence for photosynthesis that made oxygen

07.10.2015 | Earth Sciences

More VideoLinks >>>