Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Chest CT helps predict cardiovascular disease risk

27.05.2014

Incidental chest computed tomography (CT) findings can help identify individuals at risk for future heart attacks and other cardiovascular events, according to a new study published online in the journal Radiology.

"In addition to diagnostic purposes, chest CT can be used for the prediction of cardiovascular disease," said Pushpa M. Jairam, M.D., Ph.D., from the University Medical Center Utrecht, in Utrecht, the Netherlands. "With this study, we have taken a new perspective by providing a different approach for cardiovascular disease risk prediction strictly based on information readily available to the radiologist."


Here are examples of cardiovascular chest CT findings. A, Ascending thoracic aorta diameter measurement. B, Cardiac diameter measurement. C, Calcifications in the left anterior descending coronary artery and the descending thoracic aorta (arrows). D, Calcifications on the mitral valve (arrow).

Credit: Radiological Society of North America

Currently, individuals at high risk for cardiovascular events are identified through risk stratification tools based on conventional risk factors, such as age, gender, blood pressure, cholestorol levels, diabetes, smoking status or other factors thought to be related to heart disease. However, a substantial number of cardiovascular events occur in individuals with no conventional risk factors, or in patients with undetected or underdiagnosed risk factors.

"Extensive literature has clearly documented the uncertainty of prediction models based on conventional risk factors," Dr. Jairam said. "With this study, we address to some extent, the need for a shift in cardiovascular risk assessment from conventional risk factors to direct measures of subclinical atherosclerosis."

... more about:
»CT »Chest »RSNA »Radiological »conventional

Through the use of chest CT, radiologists are routinely confronted with findings that are unsuspected or unrelated to the CT indication, known as incidental findings. Incidental findings indicating early signs of atherosclerosis are quite common and could play a role in a population-based screening approach to identify individuals at high risk for cardiovascular events. However, there is currently no guidance on how to weigh these findings in routine practice.

Dr. Jairam and colleagues set out to develop and validate an imaging-based prediction model to more accurately assess the contribution of incidental findings on chest CT in detecting patients at high risk for cardiovascular disease.

The retrospective study looked at follow-up data from 10,410 patients who underwent diagnostic chest CT for non-cardiovascular indications. During a mean follow-up period of 3.7 years, 1,148 cardiovascular events occurred among these patients.

CT scans from these patients and from a random sampling of 10 percent of the remaining patients in the group were visually graded for several cardiovascular findings. The final prediction model included age, gender, CT indication, left anterior descending coronary artery calcifications, mitral valve calcifications, descending aorta calcifications and cardiac diameter. The model was found to have accurately placed individuals into clinically relevant risk categories.

The results showed that radiologic information may complement standard clinical strategies in cardiovascular risk screening and may improve diagnosis and treatment in eligible patients.

"Our study provides a novel strategy to detect patients at high risk for cardiovascular disease, irrespective of the conventional risk factor status, based on freely available incidental information from a routine diagnostic chest CT," Dr. Jairam said. "The resulting prediction rule may be used to assist clinicians to refer these patients for timely preventive cardiovascular risk management."

Dr. Jairam cautions that a prospective, multicenter trial is needed to validate the impact of these findings.

###

"Incidental Imaging Findings from Routine Chest CT Used to Identify Subjects at High Risk of Future Cardiovascular Events." Collaborating with Dr. Jairam were Martijn J.A. Gondrie, M.D., Ph.D., Diederick E. Grobbee, M.D., Ph.D., Willem P. Th. M. Mali, M.D., Ph.D., Peter C. A. Jacobs, M.D., Ph.D., and Yolanda van der Graaf, M.D., Ph.D.

This report is a part of the PROVIDI study and is funded by the Netherlands Organization for Scientific Research-Medical Sciences (NWO-MW).

Radiology is edited by Herbert Y. Kressel, M.D., Harvard Medical School, Boston, Mass., and owned and published by the Radiological Society of North America, Inc..

RSNA is an association of more than 53,000 radiologists, radiation oncologists, medical physicists and related scientists promoting excellence in patient care and health care delivery through education, research and technologic innovation. The Society is based in Oak Brook, Ill. (RSNA.org)

For patient-friendly information on chest CT, visit RadiologyInfo.org.

Linda Brooks | Eurek Alert!

Further reports about: CT Chest RSNA Radiological conventional

More articles from Medical Engineering:

nachricht New investigation of endovenous laser ablation of varicose veins
11.05.2016 | Kazan Federal University

nachricht A laser for your eyes
18.04.2016 | Lomonosov Moscow State University

All articles from Medical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Worldwide Success of Tyrolean Wastewater Treatment Technology

A biological and energy-efficient process, developed and patented by the University of Innsbruck, converts nitrogen compounds in wastewater treatment facilities into harmless atmospheric nitrogen gas. This innovative technology is now being refined and marketed jointly with the United States’ DC Water and Sewer Authority (DC Water). The largest DEMON®-system in a wastewater treatment plant is currently being built in Washington, DC.

The DEMON®-system was developed and patented by the University of Innsbruck 11 years ago. Today this successful technology has been implemented in about 70...

Im Focus: Computational high-throughput screening finds hard magnets containing less rare earth elements

Permanent magnets are very important for technologies of the future like electromobility and renewable energy, and rare earth elements (REE) are necessary for their manufacture. The Fraunhofer Institute for Mechanics of Materials IWM in Freiburg, Germany, has now succeeded in identifying promising approaches and materials for new permanent magnets through use of an in-house simulation process based on high-throughput screening (HTS). The team was able to improve magnetic properties this way and at the same time replaced REE with elements that are less expensive and readily available. The results were published in the online technical journal “Scientific Reports”.

The starting point for IWM researchers Wolfgang Körner, Georg Krugel, and Christian Elsässer was a neodymium-iron-nitrogen compound based on a type of...

Im Focus: Atomic precision: technologies for the next-but-one generation of microchips

In the Beyond EUV project, the Fraunhofer Institutes for Laser Technology ILT in Aachen and for Applied Optics and Precision Engineering IOF in Jena are developing key technologies for the manufacture of a new generation of microchips using EUV radiation at a wavelength of 6.7 nm. The resulting structures are barely thicker than single atoms, and they make it possible to produce extremely integrated circuits for such items as wearables or mind-controlled prosthetic limbs.

In 1965 Gordon Moore formulated the law that came to be named after him, which states that the complexity of integrated circuits doubles every one to two...

Im Focus: Researchers demonstrate size quantization of Dirac fermions in graphene

Characterization of high-quality material reveals important details relevant to next generation nanoelectronic devices

Quantum mechanics is the field of physics governing the behavior of things on atomic scales, where things work very differently from our everyday world.

Im Focus: Graphene: A quantum of current

When current comes in discrete packages: Viennese scientists unravel the quantum properties of the carbon material graphene

In 2010 the Nobel Prize in physics was awarded for the discovery of the exceptional material graphene, which consists of a single layer of carbon atoms...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Networking 4.0: International Laser Technology Congress AKL’16 Shows New Ways of Cooperations

24.05.2016 | Event News

Challenges of rural labor markets

20.05.2016 | Event News

International expert meeting “Health Business Connect” in France

19.05.2016 | Event News

 
Latest News

Stick insects produce bacterial enzymes themselves

31.05.2016 | Life Sciences

In a New Method for Searching Image Databases, a Hand-drawn Sketch Is all it Takes

31.05.2016 | Information Technology

Consensus in the Fight Against Colorectal Cancer

31.05.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>