Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Catching the heart and lungs in action

10.11.2008
A RIKEN-led team has designed and constructed a high-resolution, computed tomography (CT) system that can visualize the motion and deformation of the heart, coronary arteries and small airways of live rats and mice, the animals most often used as models for human disease.

A newly developed micro-CT system produces images sharp enough to detect the motion of arteries and small airways in rats and mice

A RIKEN-led team has designed and constructed a high-resolution, computed tomography (CT) system that can visualize the motion and deformation of the heart, coronary arteries and small airways of live rats and mice, the animals most often used as models for human disease.

These internal movements are integral to understanding respiratory and cardiovascular diseases, and therefore to the development of effective treatments. They are also influenced by drugs, and hence can be used in testing and development of new therapeutic compounds.

The condition of the heart is manifested in its rhythmical beating, and the location of fatty deposits, which can lead to heart disease, is influenced by motion of the arteries. Deformation of the airways affects gas exchange and deposition of particles, and initial results from the new system already show that changes in diameter are larger in smaller airways.

In the past five years, several systems have been proposed and developed for imaging the heart and lungs of small living animals, but none have been sharp enough to detect the motion of arteries and small airways. The highest potential resolution can be obtained using x-ray based, micro-CT, but the sample animal needs to be as still as possible. When imaging the heart, the movement of the lung needs to be minimized, and vice versa. So, data to construct the images needs to be collected under certain prescribed conditions.

In a recent paper in Physics in Medicine and Biology1, researchers from the RIKEN Advanced Science Institute in Wako and other Japanese institutions explain how they dealt with these problems.

They used synchrotron radiation at the SPring-8 Center in Harima, which is much more powerful and predictable than standard laboratory sources, and so achieves high contrast resolution and minimizes blur. The shutters for x-ray source and detection were synchronized. The sample rodents were anaesthetized, put onto a ventilator, and connected to an electrocardiogram (ECG) machine. The researchers were then able to acquire data at controlled airway pressures and time observations for the periods between heart contractions. For heart and arteries, image acquisition could be timed for the end of breath expiration.

The sharp images during dramatic motion thus obtained allow calculation of gas exchange in small airways, and of shear stress in blood vessels, an important factor in deposition of plaques. “This development is a significant step in our program to create a computer model of the human body,” says Ryutaro Himeno, who heads the research team.

References

1. Sera, T., Yokota, H., Fujisaki, K., Fukasaku, K., Tachibana, H., Uesugi, K., Yagi, N. & Himeno, R. Development of high-resolution 4D in vivo-CT for visualization of cardiac and respiratory deformations of small animals. Physics in Medicine and Biology 53, 4285–4301 (2008).

The corresponding author for this highlight is based at the RIKEN Computational Biomechanics Unit

Saeko Okada | ResearchSEA
Further information:
http://www.rikenresearch.riken.jp/research/575/
http://www.researchsea.com

More articles from Medical Engineering:

nachricht Novel PET tracer identifies most bacterial infections
06.10.2017 | Society of Nuclear Medicine and Molecular Imaging

nachricht Teleoperating robots with virtual reality
05.10.2017 | Massachusetts Institute of Technology, CSAIL

All articles from Medical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Terahertz spectroscopy goes nano

20.10.2017 | Information Technology

Strange but true: Turning a material upside down can sometimes make it softer

20.10.2017 | Materials Sciences

NRL clarifies valley polarization for electronic and optoelectronic technologies

20.10.2017 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>