Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Cardiovascular disease: The mechanics of prosthetic heart valves

21.12.2012
Computer simulations of blood flow through mechanical heart valves could pave the way for more individualized prosthetics
Every year, over 300,000 heart valve replacement operations are performed worldwide. Diseased valves are often replaced with mechanical heart valves (MHVs), which cannot yet be designed to suit each patient’s specific needs. Complications such as blood clots can occur, which can require patients to take blood-thinning medication.

To investigate why such complications occur, Vinh-Tan Nguyen at A*STAR’s Institute of High Performance Computing, Singapore, together with scientists at the National University of Singapore and institutions across the USA, have developed a new computer model to simulate the dynamics of blood flow through MHVs1.

“The current practice for heart valve replacement in patients is a one-size-fits-all approach where a patient is implanted with the best-fit valve available on the market,” explains Nguyen. “The valves are well designed for general physiological conditions, but may not be suitable for each individual’s particular heart condition.”

The researchers focused on the blood flow dynamics in a prosthetic valve known as a bileaflet MHV. This type of MHV contains two mobile leaflets, or gates, which are held in place by hinges. The leaflets open and close in response to blood flow pressures through the valve. Little is known about the effect that the hinged leaflets have on blood dynamics, although such designs are suspected of causing blood clots.

The computer model developed by Nguyen and his team simulates pressure flows through bileaflet MHVs by representing blood vessels as a computational mesh, where calculations are performed for individual blocks of the mesh. Their crucial advance was in enabling this mesh to move and evolve in response to the leaflet movements.

The researchers validated their computer model through laboratory experiments with a full 3D reproduction of the heart's circulation system. Particle imaging equipment allowed them to visualize the fluid dynamics under different scenarios including pulsatile flow, which follows the pattern of a typical cardiac cycle.

“We obtained good agreement between our computer simulations and the experiments in terms of the magnitude and velocity of blood flow through the leaflets,” states Nguyen. The researchers also found that leaflet hinges might play a vital role in clotting, because individual hinges have different tolerances that can disrupt normal blood flow and cause stress in the vein walls.

This research is a first crucial step in understanding the impact of MHVs on blood flow. “Ultimately we hope to provide doctors with a tool to evaluate blood flow dynamics and other related aspects in patients with newly implanted valves,” says Nguyen.

The A*STAR-affiliated researchers contributing to this research are from the Institute of High Performance Computing

Journal information

Nguyen, V.-T., Kuan, Y. H., Chen, P.-Y., Ge, L., Sotiropoulos, F. et al. Experimentally validated hemodynamics simulations of mechanical heart valves in three dimensions. Cardiovascular Engineering and Technology 3, 88–100 (2012)

A*STAR Research | Research asia research news
Further information:
http://www.a-star.edu.sg
http://www.researchsea.com
http://www.researchsea.com/html/article.php/eml/1/aid/7539/cid/3

More articles from Medical Engineering:

nachricht MRI technique induces strong, enduring visual association
01.07.2016 | Brown University

nachricht Innovative device allows 3-D imaging of the breast with less radiation
17.06.2016 | DOE/Thomas Jefferson National Accelerator Facility

All articles from Medical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Self-assembling nano inks form conductive and transparent grids during imprint

Transparent electronics devices are present in today’s thin film displays, solar cells, and touchscreens. The future will bring flexible versions of such devices. Their production requires printable materials that are transparent and remain highly conductive even when deformed. Researchers at INM – Leibniz Institute for New Materials have combined a new self-assembling nano ink with an imprint process to create flexible conductive grids with a resolution below one micrometer.

To print the grids, an ink of gold nanowires is applied to a substrate. A structured stamp is pressed on the substrate and forces the ink into a pattern. “The...

Im Focus: The Glowing Brain

A new Fraunhofer MEVIS method conveys medical interrelationships quickly and intuitively with innovative visualization technology

On the monitor, a brain spins slowly and can be examined from every angle. Suddenly, some sections start glowing, first on the side and then the entire back of...

Im Focus: Newly discovered material property may lead to high temp superconductivity

Researchers at the U.S. Department of Energy's (DOE) Ames Laboratory have discovered an unusual property of purple bronze that may point to new ways to achieve high temperature superconductivity.

While studying purple bronze, a molybdenum oxide, researchers discovered an unconventional charge density wave on its surface.

Im Focus: Mapping electromagnetic waveforms

Munich Physicists have developed a novel electron microscope that can visualize electromagnetic fields oscillating at frequencies of billions of cycles per second.

Temporally varying electromagnetic fields are the driving force behind the whole of electronics. Their polarities can change at mind-bogglingly fast rates, and...

Im Focus: Continental tug-of-war - until the rope snaps

Breakup of continents with two speed: Continents initially stretch very slowly along the future splitting zone, but then move apart very quickly before the onset of rupture. The final speed can be up to 20 times faster than in the first, slow extension phase.phases

Present-day continents were shaped hundreds of millions of years ago as the supercontinent Pangaea broke apart. Derived from Pangaea’s main fragments Gondwana...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

GROWING IN CITIES - Interdisciplinary Perspectives on Urban Gardening

15.07.2016 | Event News

SIGGRAPH2016 Computer Graphics Interactive Techniques, 24-28 July, Anaheim, California

15.07.2016 | Event News

Partner countries of FAIR accelerator meet in Darmstadt and approve developments

11.07.2016 | Event News

 
Latest News

New movie screen allows for glasses-free 3-D

26.07.2016 | Information Technology

Scientists develop painless and inexpensive microneedle system to monitor drugs

26.07.2016 | Health and Medicine

Astronomers discover dizzying spin of the Milky Way galaxy's 'halo'

26.07.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>