Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Cardiac catheter that can do it all

07.03.2011
New stretchable electronics device promises to make cardiac ablation therapy simpler

In an improvement over open-heart surgery, cardiologists now use catheters to eliminate damaged heart tissue in certain patients, such as those with arrhythmias. But this, too, can be a long and painful procedure as many catheters, with different functions, need to be inserted sequentially.

Now an interdisciplinary team including researchers from Northwestern University has developed one catheter that can do it all. This tool for cardiac ablation therapy has all necessary medical devices printed on a standard balloon catheter: a device for eliminating damaged tissue using heat, temperature and pressure sensors, an LED and an electrocardiogram (EKG) sensor.

The multifunctional catheter makes a minimally invasive technique for heart surgery even better. Both diagnostic and treatment capabilities are combined in one. The stretchable electronics developed by Yonggang Huang of Northwestern and John Rogers of the University of Illinois at Urbana-Champaign make it possible.

The research will be published March 6 by the journal Nature Materials.

"The use of one catheter to achieve all these functions will significantly improve clinical arrhythmia therapy by reducing the number of steps in the procedure, thereby saving time and reducing costs," said Huang, Joseph Cummings Professor of Civil and Environmental Engineering and Mechanical Engineering at Northwestern's McCormick School of Engineering and Applied Science. He led the Northwestern portion of the work.

In conversation with collaborating cardiologists, Moussa Mansour, M.D., of Harvard Medical School; Marvin Slepian, M.D., of the University of Arizona; and Joshua Moss, M.D., and Brian Litt, M.D., of the University of Pennsylvania, Huang and Rogers recognized that their stretchable electronics could improve the surgical tools currently used in cardiac ablation therapy. This procedure is used to cure or control a variety of arrhythmias, or irregular heartbeats.

The electronics Huang and Rogers use in this study are based on a "pop-out" design of interconnects, similar to their early design for stretchable electronics but with much larger -- approximately 130 percent -- stretchability. The type of arrhythmia the team focuses on is tachycardia, when the heart beats too fast; the tissue that induces this condition is the target of their ablation therapy.

This ability of the electronics to stretch is important because the researchers print all the necessary medical devices on a section of a standard endocardial balloon catheter (a thin, flexible tube) where the wall is thinner than the rest. (This section is slightly recessed from the rest of the catheter's surface.) There the sensitive devices and actuators are protected during the catheter's trip through the body to the heart. Once the catheter reaches the heart, the catheter is inflated, and the thin section expands significantly; the electronics are now exposed and in contact with the heart.

"Our challenge was how to make the electronics sustain such a large stretch when the thin wall expands under pressure," Huang said. "We devised what we call a 'pop-out interconnect' that performs very well. We didn't expect the electronics to sustain a stretch nearly three times the section's length."

Once the catheter is in place, the individual devices can perform their specific tasks when needed. The pressure sensor determines the pressure on the heart; the EKG sensor monitors the heart's condition during the procedure; the LED sheds light for imaging and also provides the energy for ablation therapy to eliminate (ablate) the tachycardia-inducing tissue; and the temperature sensor controls the temperature so as not to damage other, good tissue.

The entire system is designed to operate reliably without any changes in properties as the balloon inflates and deflates. "It demands all the features and capabilities that we've developed in stretchable electronics over the years in a pretty aggressive way," Rogers said. "It also really exercises the technology in an extreme, and useful, manner -- we put everything on the soft surface of a rubber balloon and blow it up without any of the devices failing."

These devices can deliver critical high-quality information, such as temperature, mechanical force, blood flow and electrogram, to the surgeon in real time. While the multifunctional catheter has not been used with humans, the researchers have demonstrated the utility of the device with anesthetized animals.

The fabrication techniques the engineers used in developing the balloon device could be exploited for integrating many classes of advanced semiconductor devices on a variety of surgical instruments. For example, the team also demonstrated surgical gloves with sensor arrays mounted on the fingertips to show that the electronics could be applied to other biomedical platforms.

Huang led the theory and mechanical and thermal design work at Northwestern. He and his colleagues' contribution was to ensure the mechanical integrity of the device so there was no failure during significant stretching and to control temperature during cardiac ablation therapy. Rogers, the Lee J. Flory Founder Chair in Engineering and professor of materials science and engineering at the University of Illinois at Urbana-Champaign, led the design, experimental and fabrication work.

The paper is titled "Materials for Multifunctional Balloon Catheters with Capabilities in Cardiac Electrophysiological Mapping and Ablation Therapy." The senior authors of the paper are from Northwestern University, the University of Illinois at Urbana-Champaign, Harvard Medical School, the University of Arizona and the Hospital of the University of Pennsylvania.

Megan Fellman | EurekAlert!
Further information:
http://www.northwestern.edu

More articles from Medical Engineering:

nachricht Penn first in world to treat patient with new radiation technology
22.09.2017 | University of Pennsylvania School of Medicine

nachricht Skin patch dissolves 'love handles' in mice
18.09.2017 | Columbia University Medical Center

All articles from Medical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Rainbow colors reveal cell history: Uncovering β-cell heterogeneity

22.09.2017 | Life Sciences

Penn first in world to treat patient with new radiation technology

22.09.2017 | Medical Engineering

Calculating quietness

22.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>