Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

BUSM researchers identify better laser for treating facial spider veins

08.10.2009
Researchers from Boston University School of Medicine (BUSM) have concluded that the 940nm wavelength laser is superior for treating facial spider veins (telangiectasias) as compared to the 532nm wavelength laser.

The findings, which appear in the recent issue of Lasers in Surgery and Medicine, are the first time these lasers were tested against each other for superiority.

Telangiectasias are open (dilated) blood vessels in the outer layer of the skin usually caused by sun damage or aging. When appearing on the legs, they are often called spider veins. They are common to a number diseases, including acne, rosacea, birthmarks (port-wine stains), scleroderma, several types of inherited disorders (ataxia-telangiectasia, hereditary hemorrhagic telangiectasia, xeroderma pigmentosum, and others), or with prolonged use of oral or topical corticosteroids.

According to the researchers, while both the 532 and 940nm wavelength lasers are effective for facial telangiectasias, they lacked evidence to support whether one wavelength was superior to the other until now.

A total of 24 facial anatomic sites were treated with the 532 and the 940nm wavelength lasers. The presence and severity of side effects such as pain, erythema, crusting, swelling and blistering were assessed.

The researchers found pain associated with the laser treatment was significantly less for the 940nm wavelength compared to the 532nm wavelength. Erythema post-treatment was significantly less with 940nm relative to 532 nm. Significant crusting and swelling were only reported with the 532nm wavelength. Visual improvement with the 940nm wavelength was greater than that achieved with the 532nm wavelength. On photographic evaluation, the 940nm laser was significantly more efficacious for larger caliber vessels than 532nm. Both wavelengths were equally effective for smaller caliber vessels.

"The 940nm diode laser was found to have greater efficacy for deeper blood vessels based upon its superior penetration of the dermis with a longer wavelength. In addition, the 940nm wavelength corresponds with a lesser absorption peak of oxyhemoglobin than that for 532 nm, resulting in slower and more uniform heating of the vessel," said lead author Emily Tierney, MD, an assistant professor of dermatology at BUSM. "In addition, there is minimal melanin absorption at the 940nm wavelength, and thus, there is less risk of post-inflammatory change or scarring," she added.

Given the efficacy and safety of the 940nm wavelength laser, the researchers recommend this wavelength be added to the standard treatment facial vasculature.

Gina M. DiGravio | EurekAlert!
Further information:
http://www.bmc.org

More articles from Medical Engineering:

nachricht Visualizing gene expression with MRI
23.12.2016 | California Institute of Technology

nachricht Illuminating cancer: Researchers invent a pH threshold sensor to improve cancer surgery
21.12.2016 | UT Southwestern Medical Center

All articles from Medical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

A big nano boost for solar cells

18.01.2017 | Power and Electrical Engineering

Glass's off-kilter harmonies

18.01.2017 | Materials Sciences

Toward a 'smart' patch that automatically delivers insulin when needed

18.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>