Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Bringing lab-on-a-chip to a surgery near you

If doctors were able to conduct efficient genetic analysis at the point of care, using inexpensive, portable equipment, it would revolutionise disease detection and treatment. European researchers are close to enabling this revolution.

Today, anybody getting tests done in a GP’s surgery or hospital outpatients will usually have to wait several days before getting any results.

Using current technology, it is not possible to carry out a complete DNA analysis on a single device, and several steps are required with expensive and cumbersome equipment.

Because of the different steps involved, and the need to move blood and tissue samples from one location to another, the potential for human error can reduce the reliability of the test procedures.

Now an ambitious EU-funded project, SMART-BIOMEMS, is in the process of fabricating a novel microsystem – a lab on a microfluidic chip – which can be used in a portable diagnostic device, to simultaneously and automatically analyse various DNA samples with high precision.

Explains project coordinator Gianluca Vezzani: “What we are developing here is a comparatively inexpensive, easy-to-use and portable point-of-care system which will have very real clinical benefits.”

He says that, while the SMART-BIOMEMS system could be customised for any field where DNA testing is used, the prototype has been specifically designed for cancer testing and diagnosis.

“Because there are biochemical reactions occurring on the device, it has to be set up with specific reagents and biological protocols appropriate to the task at hand, and we chose cancer for the initial testing because it is such an important field.”

Signs of a working prototype

Since the project kicked off in December 2005, a lot of initial research and testing of different components of the system have been carried out. In order that a prototype device could be properly assembled and validated, the duration of the project has been extended by four months until the end of March 2009. By that time, Vezzani is confident a working and fully tested prototype will be ready for demonstration.

For the final validation of the system, a clinically relevant human gene, TP53, will be tested. It is well known that mutations in this gene can potentially be the cause of cancerous tumours.

“We will use a known sample – where we know the mutations – and test the capability of the system to identify these mutations. We will then compare the results of our tests with results from a conventional testing procedure to check on the accuracy of the results and the time our microsystem takes to complete the analysis,” he says.

In the testing, a DNA sample will be inserted into the device, the power switched on to move the fluid sample within the microfluidic chip by the pressure control unit, and from there the whole process is automatic, thus eliminating the possibility of human error or contamination of the sample.

The device will be connected to a standard PC equipped with a camera to acquire images of fluorescence transmitted by the device. Software, which has been specially developed by the project, analyses the images and displays the results of the testing on the computer monitor.

“The idea is to detect cancer at a very early stage, before it has a chance to spread, because we know that specific mutations in specific genes are likely to be the cause of potential tumours. The doctor can take samples on the spot, feed them into the device, and get a diagnosis in a short time span,” Vezzani says.

Once the devices are commercialised, doctors can routinely and affordably carry out on-the-spot checks of patients who are considered to be cancer risks, and catch the disease at an early enough stage to treat it – saving thousands of lives.

From cancer to other applications

Diagnosing cancer is just the start for the SMART-BIOMEMS system, however, with other potential applications ranging from any sort of medical testing of DNA samples, to animal health and livestock breeding programmes, etc.

The only restriction is that samples must be liquid, so if, say, firm plant tissue needs to be tested it must be liquidised first.

“Otherwise it is simply a question of storing different reagents in different chambers on the system depending on what it is that you want to test,” says Vezzani. “SMART-BIOMEMS is what we call a fully integrated microfluidic device which moves a liquid plug of a specific volume through a network of micro-channels and chambers where the reactions take place.”

Vezzani says there are companies involved in the project that are looking at patenting some parts of the core technology which has been developed with a view to commercialisation.

“Should the prototype work, which we are sure it will do, we think it would take two to three years after the end of the project to see a commercial device, and these could be available by 2012. Right from the start, we have tried to design a cost-effective system.”

So in a few years’ time, doctors throughout the EU may have a SMART-BIOMEMS diagnostic system sitting on their desks next to their PCs.

Christian Nielsen | alfa
Further information:

More articles from Medical Engineering:

nachricht Gentle sensors for diagnosing brain disorders
29.09.2016 | King Abdullah University of Science and Technology

nachricht New imaging technique in Alzheimer’s disease - opens up possibilities for new drug development
28.09.2016 | Lund University

All articles from Medical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>