Breakthrough heart scanner will allow earlier diagnosis

The portable magnetometer* is being developed at the University of Leeds, with funding from the Engineering and Physical Sciences Research Council (EPSRC) playing a key role.

Due to its unprecedented sensitivity to magnetic fluctuations the device will be able to detect a number of conditions, including heart problems in foetuses, earlier than currently available diagnostic techniques such as ultrasound, ECG (electrocardiogram) and existing cardiac magnetometers. It will also be smaller, simpler to operate, able to gather more information and significantly cheaper than other devices currently available.

'Listen to a podcast about the device on our Pioneer Podcast page on iTunes or alternatively, watch it on our Youtube or Vimeo channels

Another key benefit is that, for the first time, skilled nurses as well as doctors will be able to carry out heart scans, helping to relieve pressure on hospital waiting lists. The device will also function through clothes, cutting the time needed to perform scans and removing the need for patients to undress for an examination. It could also be taken out to a patient's home, leading to a reduction in the use of hospital facilities.

Large scale magnetometers have been used for some time for things like directional drilling for oil and gas, on spacecraft for planet exploration and to detect archaeological sites and locate other buried or submerged objects. What has prevented them being used for identifying heart conditions is their size and high cost along with the specialist skill needed to operate them. Using them to examine a patient would involve containing the person within a magnetic shield to cut out other electrical interference.

“The new system gets round previous difficulties by putting the actual detector in its own magnetic shield,” said Professor Ben Varcoe who is leading the research team.

“The sensor placed over the area being examined lives outside the shielded area and transmits signals into the detector. The sensor head is made up of a series of coils that cancel out unwanted signals and amplifies the signals that are needed. So the tiny magnetic fields produced by a person's heart can be transmitted into the heavily shielded environment. What we've been able to do is combine existing technology from the areas of atomic physics and medical physics in a completely unique way.”

Like all parts of the body, the heart produces its own distinctive magnetic 'signature'. The research team has demonstrated that their magnetometer – developed as part of their work in the area of quantum physics – can reveal tiny variations in that signature. Studying these variations can, in turn, reveal the presence of a cardiac condition. The team is now working on miniaturising the magnetometer for widespread medical use. The device could be ready for use in routine diagnosis in around three years.

“Early detection of heart conditions improves the prospects for successful treatment. This system will also quickly identify people who need immediate treatment,” says Professor Varcoe. “But our device won't just benefit patients – it will also help ease the strain on healthcare resources and hospital waiting lists.”

Media Contact

EPSRC Press Office EurekAlert!

More Information:

http://www.epsrc.ac.uk

All latest news from the category: Medical Engineering

The development of medical equipment, products and technical procedures is characterized by high research and development costs in a variety of fields related to the study of human medicine.

innovations-report provides informative and stimulating reports and articles on topics ranging from imaging processes, cell and tissue techniques, optical techniques, implants, orthopedic aids, clinical and medical office equipment, dialysis systems and x-ray/radiation monitoring devices to endoscopy, ultrasound, surgical techniques, and dental materials.

Back to home

Comments (0)

Write a comment

Newest articles

Lighting up the future

New multidisciplinary research from the University of St Andrews could lead to more efficient televisions, computer screens and lighting. Researchers at the Organic Semiconductor Centre in the School of Physics and…

Researchers crack sugarcane’s complex genetic code

Sweet success: Scientists created a highly accurate reference genome for one of the most important modern crops and found a rare example of how genes confer disease resistance in plants….

Evolution of the most powerful ocean current on Earth

The Antarctic Circumpolar Current plays an important part in global overturning circulation, the exchange of heat and CO2 between the ocean and atmosphere, and the stability of Antarctica’s ice sheets….

Partners & Sponsors