Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Breakthrough heart scanner will allow earlier diagnosis

28.01.2010
An innovative cardiac scanner will dramatically improve the process of diagnosing heart conditions.

The portable magnetometer* is being developed at the University of Leeds, with funding from the Engineering and Physical Sciences Research Council (EPSRC) playing a key role.

Due to its unprecedented sensitivity to magnetic fluctuations the device will be able to detect a number of conditions, including heart problems in foetuses, earlier than currently available diagnostic techniques such as ultrasound, ECG (electrocardiogram) and existing cardiac magnetometers. It will also be smaller, simpler to operate, able to gather more information and significantly cheaper than other devices currently available.

'Listen to a podcast about the device on our Pioneer Podcast page on iTunes or alternatively, watch it on our Youtube or Vimeo channels

Another key benefit is that, for the first time, skilled nurses as well as doctors will be able to carry out heart scans, helping to relieve pressure on hospital waiting lists. The device will also function through clothes, cutting the time needed to perform scans and removing the need for patients to undress for an examination. It could also be taken out to a patient's home, leading to a reduction in the use of hospital facilities.

Large scale magnetometers have been used for some time for things like directional drilling for oil and gas, on spacecraft for planet exploration and to detect archaeological sites and locate other buried or submerged objects. What has prevented them being used for identifying heart conditions is their size and high cost along with the specialist skill needed to operate them. Using them to examine a patient would involve containing the person within a magnetic shield to cut out other electrical interference.

"The new system gets round previous difficulties by putting the actual detector in its own magnetic shield," said Professor Ben Varcoe who is leading the research team.

"The sensor placed over the area being examined lives outside the shielded area and transmits signals into the detector. The sensor head is made up of a series of coils that cancel out unwanted signals and amplifies the signals that are needed. So the tiny magnetic fields produced by a person's heart can be transmitted into the heavily shielded environment. What we've been able to do is combine existing technology from the areas of atomic physics and medical physics in a completely unique way."

Like all parts of the body, the heart produces its own distinctive magnetic 'signature'. The research team has demonstrated that their magnetometer – developed as part of their work in the area of quantum physics – can reveal tiny variations in that signature. Studying these variations can, in turn, reveal the presence of a cardiac condition. The team is now working on miniaturising the magnetometer for widespread medical use. The device could be ready for use in routine diagnosis in around three years.

"Early detection of heart conditions improves the prospects for successful treatment. This system will also quickly identify people who need immediate treatment," says Professor Varcoe. "But our device won't just benefit patients – it will also help ease the strain on healthcare resources and hospital waiting lists."

EPSRC Press Office | EurekAlert!
Further information:
http://www.epsrc.ac.uk

More articles from Medical Engineering:

nachricht Novel breast tomosynthesis technique reduces screening recall rate
21.02.2017 | Radiological Society of North America

nachricht Biocompatible 3-D tracking system has potential to improve robot-assisted surgery
17.02.2017 | Children's National Health System

All articles from Medical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Positrons as a new tool for lithium ion battery research: Holes in the electrode

22.02.2017 | Power and Electrical Engineering

New insights into the information processing of motor neurons

22.02.2017 | Life Sciences

Healthy Hiking in Smart Socks

22.02.2017 | Innovative Products

VideoLinks
B2B-VideoLinks
More VideoLinks >>>