Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Novel brain imaging technique explains why concussions affect people differently

08.06.2012
Patients vary widely in their response to concussion, but scientists haven't understood why.

Now, using a new technique for analyzing data from brain imaging studies, researchers at Albert Einstein College of Medicine of Yeshiva University and Montefiore Medical Center have found that concussion victims have unique spatial patterns of brain abnormalities that change over time.

The new technique could eventually help in assessing concussion patients, predicting which head injuries are likely to have long-lasting neurological consequences, and evaluating the effectiveness of treatments, according to lead author Michael L. Lipton, M.D., Ph.D., associate director of the Gruss Magnetic Resonance Research Center at Einstein and medical director of magnetic resonance imaging (MRI) services at Montefiore. The findings are published today in the online edition of Brain Imaging and Behavior.

The Centers for Disease Control and Prevention estimates that more than one million Americans sustain a concussion (also known as mild traumatic brain injury, or mTBI) each year. Concussions in adults result mainly from motor vehicle accidents or falls. At least 300,000 adults and children are affected by sports-related concussions each year. While most people recover from concussions with no lasting ill effects, as many as 30 percent suffer permanent impairment – undergoing a personality change or being unable to plan an event. A 2003 federal study called concussions "a serious public health problem" that costs the U.S. an estimated $80 billion a year.

Previous imaging studies found differences between the brains of people who have suffered concussions and normal individuals. But those studies couldn't assess whether concussion victims differ from one another. "In fact, most researchers have assumed that all people with concussions have abnormalities in the same brain regions," said Dr. Lipton, who is also associate professor of radiology, of psychiatry and behavioral sciences, and in the Dominick P. Purpura Department of Neuroscience at Einstein. "But that doesn't make sense, since it is more likely that different areas would be affected in each person because of differences in anatomy, vulnerability to injury and mechanism of injury."

In the current study, the Einstein researchers used a recently developed MRI technique called diffusion tensor imaging (DTI) on 34 consecutive patients (19 women and 15 men aged 19 to 64) diagnosed with mTBI at Montefiore in the Bronx and on 30 healthy controls. The patients were imaged within two weeks of injury and again three and six months afterward.

The imaging data were then analyzed using a new software tool called Enhanced Z-score Microstructural Assessment Pathology (EZ-MAP), which allows researchers for the first time to examine microstructural abnormalities across the entire brain of individual patients. EZ-MAP was developed by Dr. Lipton and his colleagues at Einstein.

DTI detects subtle damage to the brain by measuring the direction of diffusion of water in white matter. The same technology was used by Dr. Lipton and his team in widely publicized research on more than 30 amateur soccer players who had all played the sport since childhood. They found that frequent headers showed brain injury similar to that seen in patients with concussion.

The uniformity of diffusion direction – an indicator of whether tissue has maintained its microstructural integrity – is measured on a zero-to-one scale called fractional anisotropy (FA). In the latest study, areas of abnormally low FA (reflecting abnormal brain regions) were observed in concussion patients but not in controls. Each concussion patient had a unique spatial pattern of low FA that evolved over the study period.

Surprisingly, each patient also had a unique, evolving pattern of abnormally high FA distinct from the areas of low FA. "We found widespread high FA at every time point, all the way out to six months and even in patients more than one year out from their injury." said Dr. Lipton. "We suspect that high FA represents a response to the injury. In other words, the brain may be trying to compensate for the injury by developing and enhancing other neural connections. This is a new and unexpected finding."

At present, diagnosis of concussions is based mainly on the nature of the patient's accident and the presence of symptoms including headache, dizziness and behavioral abnormalities. DTI, combined with EZ-MAP analysis, might offer a more objective tool for diagnosing concussion injuries and for predicting which patients will have persistent and progressive symptoms.

The paper is titled "Robust Detection of Traumatic Axonal Injury in Individual Mild Traumatic Brain Injury Patients: Intersubject Variation, Change Over Time and Bidirectional Changes in Anisotropy." Contributors include Namhee Kim, Ph.D.; Tova M. Gardin, B.A.; Keivan Shifteh, M.D.; Mimi Kim, Sc.D.; Molly E. Zimmerman, Ph.D.; Richard B. Lipton, M.D.; and Craig A. Branch, Ph.D., all of Einstein and Montefiore; and Young Park, M.D., who earned his degree from Einstein; and Miriam Hulkower, a medical student at Einstein.

The authors report no conflicts of interest.

Albert Einstein College of Medicine

Albert Einstein College of Medicine of Yeshiva University is one of the nation's premier centers for research, medical education and clinical investigation. In 2011, Einstein received nearly $170 million in awards from the NIH for major research centers at Einstein in diabetes, cancer, liver disease, and AIDS, as well as other areas. Through its affiliation with Montefiore Medical Center, the University Hospital for Einstein, and six other hospital systems, the College of Medicine runs one of the largest post-graduate medical training programs in the United States, offering 155 residency programs to more than 2,200 physicians in training. For more information, please visit www.einstein.yu.edu and follow us on Twitter @EinsteinMed.

Montefiore Medical Center

As the University Hospital for Albert Einstein College of Medicine, Montefiore is a premier academic medical center nationally renowned for its clinical excellence, scientific discovery and commitment to its community. Montefiore is consistently recognized among the top hospitals nationally by U.S. News & World Report, and excels at educating tomorrow's healthcare professionals in superior clinical and humanistic care. Linked by advanced technology, Montefiore is a comprehensive and integrated health system that derives its inspiration for excellence from its patients and community. For more information, please visit www.montefiore.org and www.montekids.org and follow us on Twitter @MontefioreNews.

Kim Newman | EurekAlert!
Further information:
http://www.einstein.yu.edu

More articles from Medical Engineering:

nachricht Novel PET tracer identifies most bacterial infections
06.10.2017 | Society of Nuclear Medicine and Molecular Imaging

nachricht Teleoperating robots with virtual reality
05.10.2017 | Massachusetts Institute of Technology, CSAIL

All articles from Medical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Terahertz spectroscopy goes nano

20.10.2017 | Information Technology

Strange but true: Turning a material upside down can sometimes make it softer

20.10.2017 | Materials Sciences

NRL clarifies valley polarization for electronic and optoelectronic technologies

20.10.2017 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>