Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Bone-hard biomaterial

23.03.2010
Football players, skiers, tennis players – they all fear a crucial ligament rupture. If the knee ligaments are damaged the patient usually has to undergo a surgery to restore the stability of the joint.

In the surgical procedure the torn ligament is replaced by a piece of tendon from the leg, which is fixed to the bone by means of an interferential screw. The problem is that the screws are made of titanium. After a certain time the patient has to undergo a further surgery so that the material can be removed.

Researchers at the Fraunhofer Institute for Manufacturing Engineering and Applied Materials Research (IFAM) in Bremen want to spare cruciate ligament victims and other bone patients this additional procedure. They have therefore developed a screw which is biocompatible and also biodegradable over time. »We have modified biomaterials in such a way that they can be formed into robust bioactive and resorbable screws by means of a special injection molding process,« explains Dr. Philipp Imgrund, head of the biomaterial technology department at IFAM.

»Depending on the composition they biodegrade in 24 months.« Biodegradable screws made of polylactic acid are already used in the medical field, but they have the disadvantage that when they degrade they can leave holes in the bone. The IFAM researchers have therefore improved the material and developed a moldable composite made of polylactic acid and hydroxylapatite, a ceramic which is the main constituent of the bone mineral. »This composite possesses a higher proportion of hydroxylapatite and promotes the growth of bone into the implant,« says Imgrund.

The engineers at IFAM have developed a granulate from the biomaterials which can be precision-processed using conventional injection molding methods, obviating the need for any post-processing such as milling. The complex geometry is achieved in a net-shape process, producing a robust screw. The properties of this prototype come very close to those of real bone. Its compressive strength is more than 130 newtons per square millimeter, whereas real bone can withstand between 130 and 180. What's more, the injection molding process has a positive side effect. Normally, the powder injection molded part has to be compressed at very high temperatures of up to 1400° Celsius. »We only need 140 degrees for our composite materials,« says Imgrund. In future the engineers intend to develop other bioimplants using their energy-saving process.

Philipp Imgrund | EurekAlert!
Further information:
http://www.ifam.fraunhofer.de

Further reports about: Bone-hard IFAM hydroxylapatite polylactic acid titanium

More articles from Medical Engineering:

nachricht Potentially life-saving health monitor technology designed by Sussex University physicists
10.01.2018 | University of Sussex

nachricht 2 million euros in funding for new MR-compatible electrophysiological brain implants
18.12.2017 | Max-Planck-Institut für biologische Kybernetik

All articles from Medical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

Im Focus: A thermometer for the oceans

Measurement of noble gases in Antarctic ice cores

The oceans are the largest global heat reservoir. As a result of man-made global warming, the temperature in the global climate system increases; around 90% of...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Novel 3-D printing technique yields high-performance composites

16.01.2018 | Materials Sciences

New application for acoustics helps estimate marine life populations

16.01.2018 | Life Sciences

Fast-tracking T cell therapies with immune-mimicking biomaterials

16.01.2018 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>