Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Biosensor Could Help Detect Brain Injuries During Heart Surgery

12.11.2013
Johns Hopkins engineers and cardiology experts have teamed up to develop a fingernail-sized biosensor that could alert doctors when serious brain injury occurs during heart surgery. By doing so, the device could help doctors devise new ways to minimize brain damage or begin treatment more quickly.

In the Nov. 11 issue of the journal Chemical Science, the team reported on lab tests demonstrating that the prototype sensor had successfully detected a protein associated with brain injuries.


In lab tests, this small biosensor detected a protein associated with brain injuries. Photo by Weiguo Huang.

In lab tests, this small biosensor detected a protein associated with brain injuries. Photo by Weiguo Huang.

“Ideally, the testing would happen while the surgery is going on, by placing just a drop of the patient’s blood on the sensor, which could activate a sound, light or numeric display if the protein is present,” said the study’s senior author, Howard E. Katz, a Whiting School of Engineering expert in organic thin film transistors, which form the basis of the biosensor.

The project originated about two years ago when Katz, who chairs the Department of Materials Science and Engineering, was contacted by Allen D. Everett, a Johns Hopkins Children’s Center pediatric cardiologist who studies biomarkers linked to pulmonary hypertension and brain injury. As brain injury can occur with heart surgery in both adults and children, the biosensor Everett proposed should work on patients of all ages. He is particularly concerned, however, about operating room injuries to children, whose brains are still developing.

“Many of our young patients need one or more heart surgeries to correct congenital heart defects, and the first of these procedures often occurs at birth,” Everett said. “We take care of these children through adulthood, and we have all have seen the neurodevelopment problems that occur as a consequence of their surgery and post-operative care. These are very sick children, and we have done a brilliant job of improving overall survival from congenital heart surgery, but we have far to go to improve the long-term outcomes of our patients. This is our biggest challenge for the 21st century.”

He said that recent studies found that after heart surgery, about 40 percent of infant patients will have brain abnormalities that show up in MRI scans. The damage is most often caused by strokes, which can be triggered and made worse by multiple events during surgery and recovery, when the brain is most susceptible to injury. These brain injuries can lead to deficiencies in the child’s mental development and motor skills, as well as hyperactivity and speech delay.

To address these problems, Everett sought an engineer to design a biosensor that responds to glial fibrillary acidic protein (GFAP), which is a biomarker linked to brain injuries. “If we can be alerted when the injury is occurring,” he said, “then we should be able to develop better therapies. We could improve our control of blood pressure or redesign our cardiopulmonary bypass machines. We could learn how to optimize cooling and rewarming procedures and have a benchmark for developing and testing new protective medications.”

At present, Everett said, doctors have to wait years for some brain injury-related symptoms to appear. That slows down the process of finding out whether new procedures or treatments to reduce brain injuries are effective. The new device may change that. “The sensor platform is very rapid,” Everett said. “It’s practically instantaneous.”

To create this sensor, materials scientist Katz turned to an organic thin film transistor design. In recent years sensors built on such platforms have shown that they can detect gases and chemicals associated with explosives. These transistors were an attractive choice for Everett’s request because of their potential low cost, low power consumption, biocompatibility and their ability to detect a variety of biomolecules in real time. Futhermore, the architecture of these transistors could accommodate a wide variety of other useful electronic materials.

The sensing area is a small square, 3/8ths-of-an-inch on each side. On the surface of the sensor is a layer of antibodies that attract GFAP, the target protein. When this occurs, it changes the physics of other material layers within the sensor, altering the amount of electrical current that is passing through the device. These electrical changes can be monitored, enabling the user to know when GFAP is present.

“This sensor proved to be extremely sensitive,” Katz said. “It recognized GFAP even when there were many other protein molecules nearby. As far as we’ve been able to determine, this is the most sensitive protein detector based on organic thin film transistors.”

Through the Johns Hopkins Technology Transfer Office, the team members have filed for full patent protection for the new biosensor. Katz said the team is looking for industry collaborators to conduct further research and development of the device, which has not yet been tested on human patients. But with the right level of effort and support, Katz believes the device could be put into clinical use within five years. “I’m getting tremendous personal satisfaction from working on a major medical project that could help patients,” he said.

Everett, the pediatric cardiologist, said the biosensor could eventually be used outside of the operating room to quickly detect brain injuries among athletes and accident victims. “It could evolve into a point-of-care or point-of-injury device,” he said. “It might also be very useful in hospital emergency departments to screen patients for brain injuries.”

The lead author of the Chemical Science paper was Weiguo Huang, a postdoctoral fellow in Katz’s lab. Along with Everett and Katz, the co-authors, all from the Whiting School of Engineering and the School of Medicine, were Kalpana Besar, Rachel LeCover, Pratima Dulloor, Jasmine Sinha, Josue F. Martinez Hardigree, Christian Pick, Julia Swavola, Joelle Frechette and Michael Bevan.

Funding for the sensing project was provided by the Cove Point Foundation and the Johns Hopkins Environment, Energy, Sustainability and Health Institute. Fundamental materials characterization was funded by the U.S. Department of Engery Grant Number DE-FG02-07ER46465.

Color photo of the biosensor available; contact Phil Sneiderman.

Johns Hopkins University news releases can be found online at http://releases.jhu.edu/. Information on automatic email delivery of science and medical news releases is available at the same address

November 11, 2013 Tags: biosensor, brain injury, cardiology, heart surgery, materials science

Posted in Engineering, Medicine and Nursing, Technology

Office of Communications
Johns Hopkins University
3910 Keswick Road, Suite N2600
Baltimore, Maryland 21211
Phone: 443-997-9009 | Fax: 443 997-1006

Phil Sneiderman | EurekAlert!
Further information:
http://www.jhu.edu

More articles from Medical Engineering:

nachricht 3-D printed kidney phantoms aid nuclear medicine dosing calibration
06.12.2016 | Society of Nuclear Medicine

nachricht UTSA study describes new minimally invasive device to treat cancer and other illnesses
02.12.2016 | University of Texas at San Antonio

All articles from Medical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Simple processing technique could cut cost of organic PV and wearable electronics

06.12.2016 | Materials Sciences

3-D printed kidney phantoms aid nuclear medicine dosing calibration

06.12.2016 | Medical Engineering

Robot on demand: Mobile machining of aircraft components with high precision

06.12.2016 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>