Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Bedside ultrasound becomes a reality

24.02.2011
Clinicians have often referred to ultrasound technology as the "stethoscope of the future," predicting that as the equipment shrinks in size, it will one day be as common at the bedside as that trusty tool around every physician's neck. According to a new report in The New England Journal of Medicine, that day has arrived.

The "Current Concepts" article by Yale School of Medicine clinicians Christopher L. Moore, M.D., and Joshua A. Copel, M.D., outlines how ultrasound use has moved beyond traditional specialties like radiology and is now being routinely employed by clinicians across myriad medical specialties and practice areas. From anesthesia to vascular surgery, Moore and Copel say, the use of ultrasonography has increased across the board, with the biggest growth seen among non-radiologists.

Over the past two decades, the equipment used in ultrasonography—a safe, effective and non-invasive form of imaging that aids in diagnosis and guides procedures—has become more compact, higher quality and less expensive, leading to the growth of point-of-care ultrasonography, which is performed and interpreted by the clinician at the bedside.

"Ideally, point-of-care ultrasonography can decrease medical errors, provide more real-time diagnosis, and supplement or replace more advanced imaging in appropriate situations," said Moore, assistant professor in the Department of Emergency Medicine at Yale School of Medicine. "Point-of-care ultrasonography may also allow more widespread, less expensive screening for certain illnesses."

Ultrasound imaging uses the same sonar developed for ships at sea. As sound passes through the body it produces echoes, which can identify the distance, size and shape of objects inside. During an examination, a machine called a transducer is used to view an organ and produce pictures. The transducer emits sound and detects the returning echoes when it is placed on or over the body part being studied.

"Ultrasonography quality has improved dramatically and machine sizes and prices have shrunk even more dramatically," said Copel, professor in the Department of Obstetrics, Gynecology & Reproductive Sciences at Yale. "The quality of images available now on inexpensive handheld machines is better than those of systems that cost over $100,000 15 years ago."

Some medical schools are training students to use ultrasound before they choose a specialty, according to Moore. He points out that ultrasound has been used on Mount Everest, the international space station, and in battlefield situations, an indication of its versatility as a diagnostic tool. But he cautions that indiscriminate use of ultrasonography could lead to unnecessary testing, unnecessary interventions in the case of false positive findings, or inadequate investigation of false negative findings.

"More imaging could simply lead to increased expense without added benefit, or might even be harmful without appropriate training and quality assurance," said Moore. "As this technology grows, we need a better understanding of when and how it can be used effectively and competently."

Citation: N Engl J Med. 364; 8 (February 24, 2011)

Karen N. Peart | EurekAlert!
Further information:
http://www.yale.edu

More articles from Medical Engineering:

nachricht Wireless power can drive tiny electronic devices in the GI tract
28.04.2017 | Brigham and Women's Hospital

nachricht Artificial intelligence may help diagnose tuberculosis in remote areas
25.04.2017 | Radiological Society of North America

All articles from Medical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fighting drug resistant tuberculosis – InfectoGnostics meets MYCO-NET² partners in Peru

28.04.2017 | Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

 
Latest News

Wireless power can drive tiny electronic devices in the GI tract

28.04.2017 | Medical Engineering

Ice cave in Transylvania yields window into region's past

28.04.2017 | Earth Sciences

Nose2Brain – Better Therapy for Multiple Sclerosis

28.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>