Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Bedside ultrasound becomes a reality

24.02.2011
Clinicians have often referred to ultrasound technology as the "stethoscope of the future," predicting that as the equipment shrinks in size, it will one day be as common at the bedside as that trusty tool around every physician's neck. According to a new report in The New England Journal of Medicine, that day has arrived.

The "Current Concepts" article by Yale School of Medicine clinicians Christopher L. Moore, M.D., and Joshua A. Copel, M.D., outlines how ultrasound use has moved beyond traditional specialties like radiology and is now being routinely employed by clinicians across myriad medical specialties and practice areas. From anesthesia to vascular surgery, Moore and Copel say, the use of ultrasonography has increased across the board, with the biggest growth seen among non-radiologists.

Over the past two decades, the equipment used in ultrasonography—a safe, effective and non-invasive form of imaging that aids in diagnosis and guides procedures—has become more compact, higher quality and less expensive, leading to the growth of point-of-care ultrasonography, which is performed and interpreted by the clinician at the bedside.

"Ideally, point-of-care ultrasonography can decrease medical errors, provide more real-time diagnosis, and supplement or replace more advanced imaging in appropriate situations," said Moore, assistant professor in the Department of Emergency Medicine at Yale School of Medicine. "Point-of-care ultrasonography may also allow more widespread, less expensive screening for certain illnesses."

Ultrasound imaging uses the same sonar developed for ships at sea. As sound passes through the body it produces echoes, which can identify the distance, size and shape of objects inside. During an examination, a machine called a transducer is used to view an organ and produce pictures. The transducer emits sound and detects the returning echoes when it is placed on or over the body part being studied.

"Ultrasonography quality has improved dramatically and machine sizes and prices have shrunk even more dramatically," said Copel, professor in the Department of Obstetrics, Gynecology & Reproductive Sciences at Yale. "The quality of images available now on inexpensive handheld machines is better than those of systems that cost over $100,000 15 years ago."

Some medical schools are training students to use ultrasound before they choose a specialty, according to Moore. He points out that ultrasound has been used on Mount Everest, the international space station, and in battlefield situations, an indication of its versatility as a diagnostic tool. But he cautions that indiscriminate use of ultrasonography could lead to unnecessary testing, unnecessary interventions in the case of false positive findings, or inadequate investigation of false negative findings.

"More imaging could simply lead to increased expense without added benefit, or might even be harmful without appropriate training and quality assurance," said Moore. "As this technology grows, we need a better understanding of when and how it can be used effectively and competently."

Citation: N Engl J Med. 364; 8 (February 24, 2011)

Karen N. Peart | EurekAlert!
Further information:
http://www.yale.edu

More articles from Medical Engineering:

nachricht Novel breast tomosynthesis technique reduces screening recall rate
21.02.2017 | Radiological Society of North America

nachricht Biocompatible 3-D tracking system has potential to improve robot-assisted surgery
17.02.2017 | Children's National Health System

All articles from Medical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Impacts of mass coral die-off on Indian Ocean reefs revealed

21.02.2017 | Earth Sciences

Novel breast tomosynthesis technique reduces screening recall rate

21.02.2017 | Medical Engineering

Use your Voice – and Smart Homes will “LISTEN”

21.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>