Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New aortic valve without open heart surgery

06.12.2010
Siemens Healthcare developed a new, smart visualization and guidance technology, which facilitates implantation of an aortic replacement valve by means of a catheter.

The technology spares patients the trauma of surgery and cuts total per-patient costs. As the research magazine Pictures of the Future reports in its latest issue, the procedure has to date been performed on over 150 patients in Europe with an average age of 78.


For tens of thousands of people each year it is the end of the line. If they are too frail to survive open heart surgery, many patients with aortic valve disease only have about two to three years to live. An ongoing stenosis of the valve resulting from calcification of the leaflets that allow oxygen-rich blood to flow from the left ventricle of the heart into the circulatory system, aortic valve disease affects about four percent of people 65 and older. Indeed, some 60,000 open heart aortic valve replacement operations are performed each year in Europe.

The new procedure is based on the use of Siemens’ DynaCT 3D cardiac angiographic imaging system. DynaCT provides exquisitely detailed images of the thorax. But during aortic valve implantation, what the surgeon wants to see in particular is the aortic root. With this in mind, Siemens researchers have developed a technology that automatically identifies the aortic valve area in a DynaCT data set and segments it—that is, eliminates everything that is not important, such as the rib cage, from the picture.

As the replacement valve approaches the area of interest wrapped in the tip of a catheter, unique software makes it possible to identify the optimum angulation of the new valve. This information is crucial in terms of correctly placing the device so that it covers the old valve without permitting leakage or covering the end points of the coronary arteries, which would cause an immediate heart attack. When the prosthesis is in precisely the right position, a balloon inside the catheter unfurls, thus opening the prosthesis and pressing it firmly against the aortic wall.

The technology results from a clinical cooperation between Siemens Healthcare, the Leipzig Heart Center, and the German Heart Center in Munich, as well as Siemens Corporate Research (SCR) in Princeton, New Jersey. It may also become available in the U.S. in the near future.

Disclaimer: On account of certain regional limitations of sales rights and service availability, Siemens cannot guarantee that the products included in this document are available through the Siemens sales organization worldwide. Availability and packaging may vary by country and are subject to change without prior notice. Some/All of the features and products described herein may not be available in the United States.

The information in this document contains general technical descriptions of specifications and options as well as standard and optional features which do not always have to be present in individual cases. Siemens reserves the right to modify the design, packaging, specifications, and options described herein without prior notice. Please contact your local Siemens sales representative for the most current information.

Dr. Norbert Aschenbrenner | Siemens ResearchNews
Further information:
http://www.siemens.com/researchnews

More articles from Medical Engineering:

nachricht 3-D visualization of the pancreas -- new tool in diabetes research
15.03.2017 | Umea University

nachricht New PET radiotracer identifies inflammation in life-threatening atherosclerosis
02.03.2017 | Society of Nuclear Medicine

All articles from Medical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Pulverizing electronic waste is green, clean -- and cold

22.03.2017 | Materials Sciences

Astronomers hazard a ride in a 'drifting carousel' to understand pulsating stars

22.03.2017 | Physics and Astronomy

New gel-like coating beefs up the performance of lithium-sulfur batteries

22.03.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>