Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New aortic valve without open heart surgery

06.12.2010
Siemens Healthcare developed a new, smart visualization and guidance technology, which facilitates implantation of an aortic replacement valve by means of a catheter.

The technology spares patients the trauma of surgery and cuts total per-patient costs. As the research magazine Pictures of the Future reports in its latest issue, the procedure has to date been performed on over 150 patients in Europe with an average age of 78.


For tens of thousands of people each year it is the end of the line. If they are too frail to survive open heart surgery, many patients with aortic valve disease only have about two to three years to live. An ongoing stenosis of the valve resulting from calcification of the leaflets that allow oxygen-rich blood to flow from the left ventricle of the heart into the circulatory system, aortic valve disease affects about four percent of people 65 and older. Indeed, some 60,000 open heart aortic valve replacement operations are performed each year in Europe.

The new procedure is based on the use of Siemens’ DynaCT 3D cardiac angiographic imaging system. DynaCT provides exquisitely detailed images of the thorax. But during aortic valve implantation, what the surgeon wants to see in particular is the aortic root. With this in mind, Siemens researchers have developed a technology that automatically identifies the aortic valve area in a DynaCT data set and segments it—that is, eliminates everything that is not important, such as the rib cage, from the picture.

As the replacement valve approaches the area of interest wrapped in the tip of a catheter, unique software makes it possible to identify the optimum angulation of the new valve. This information is crucial in terms of correctly placing the device so that it covers the old valve without permitting leakage or covering the end points of the coronary arteries, which would cause an immediate heart attack. When the prosthesis is in precisely the right position, a balloon inside the catheter unfurls, thus opening the prosthesis and pressing it firmly against the aortic wall.

The technology results from a clinical cooperation between Siemens Healthcare, the Leipzig Heart Center, and the German Heart Center in Munich, as well as Siemens Corporate Research (SCR) in Princeton, New Jersey. It may also become available in the U.S. in the near future.

Disclaimer: On account of certain regional limitations of sales rights and service availability, Siemens cannot guarantee that the products included in this document are available through the Siemens sales organization worldwide. Availability and packaging may vary by country and are subject to change without prior notice. Some/All of the features and products described herein may not be available in the United States.

The information in this document contains general technical descriptions of specifications and options as well as standard and optional features which do not always have to be present in individual cases. Siemens reserves the right to modify the design, packaging, specifications, and options described herein without prior notice. Please contact your local Siemens sales representative for the most current information.

Dr. Norbert Aschenbrenner | Siemens ResearchNews
Further information:
http://www.siemens.com/researchnews

More articles from Medical Engineering:

nachricht Artificial intelligence may help diagnose tuberculosis in remote areas
25.04.2017 | Radiological Society of North America

nachricht Pharmacoscpy: Next-Generation Microscopy
25.04.2017 | CeMM Forschungszentrum für Molekulare Medizin der Österreichischen Akademie der Wissenschaften

All articles from Medical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

NASA's Fermi catches gamma-ray flashes from tropical storms

25.04.2017 | Physics and Astronomy

Researchers invent process to make sustainable rubber, plastics

25.04.2017 | Materials Sciences

Transfecting cells gently – the LZH presents a GNOME prototype at the Labvolution 2017

25.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>