Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A "Fantastic Voyage" Through the Body -- with Precision Control

16.12.2011
TAU researcher develops capsule endoscope controlled by MRI to investigate digestive system

Endoscopes — small cameras or optic fibres that are usually attached to flexible tubing designed to investigate the interior of the body — can be dangerously invasive. Procedures often require sedative medications and some recovery time. Now a researcher at Tel Aviv University is developing a "capsule endoscope" that can move through the digestive tract to detect problems independent of any attachments.


A prototype of the "capsule" being tested at Brigham & Women's Hospital, Boston.

According to Dr. Gabor Kosa of TAU's School of Mechanical Engineering, the project is inspired by an endoscopic capsule designed for use in the small intestine. But unlike the existing capsule, which travels at random and snaps pictures every half second to give doctors an overall view of the intestines, the new "wireless" capsules will use the magnetic field of a magnetic resonance imaging (MRI) machine and electronic signals manipulated by those operating the capsule to forge a more precise and deliberate path.

It's a less invasive and more accurate way for doctors to get an important look at the digestive tract, where difficult-to-diagnose tumors or wounds may be hidden, or allow for treatments such as biopsies or local drug delivery. The technology, which was recently reported in Biomedical Microdevices, was developed in collaboration with Peter Jakab, an engineer from the Surgical Planning Laboratory at Brigham and Women's Hospital in Boston, affiliated with Harvard Medical School.

Swimming with the current

What sets this endoscope apart is its ability to actively explore the digestive tract under the direction of a doctor. To do this, the device relies on the magnetic field of the MRI machine as a "driving force," says Dr. Kosa. "An MRI has a very large constant magnetic field," he explains. "The capsule needs to navigate according to this field, like a sailboat sailing with the wind."

In order to help the capsules "swim" with the magnetic current, the researchers have given them "tails," a combination of copper coils and flexible polymer. The magnetic field creates a vibration in the tail which allows for movement, and electronics and microsensors embedded in the capsule allow the capsule's operator to manipulate the magnetic field that guides the movement of the device. The use of copper, a non-ferro magnetic material, circumvents other diagnostic challenges posed by MRI, Dr. Kosa adds. While most magnets interfere with MRI by obscuring the picture, copper appears as only a minor blot on otherwise clear film.

The ability to drive the capsule, Dr. Kosa says, will not only lead to better diagnosis capabilities, but patients will experience a less invasive procedure in a fraction of the time.

Microrobotics of the future

In the lab at the Brigham and Women's Hospital, Dr. Kosa and his fellow researchers have tested the driving mechanism of the capsule in an aquarium inside the MRI. The results have shown that the capsule can successfully be manipulated using a magnetic field. Moving forward, the researchers are hoping to further develop the capsule's endoscopic and signalling functions.

According to Dr. Kosa, a new faculty recruit to TAU, this project is part of a bright future for the field of microrobotics. At the university, his new research lab, called RBM2S, focuses on microsystems and robotics for biomedical applications, and an educational robotics lab, ERL, will teach future robotics experts studying at TAU's School of Mechanical Engineering.

George Hunka | EurekAlert!
Further information:
http://www.aftau.org

Further reports about: Control MRI Mechanical Engineering Tau electronic signal magnetic field

More articles from Medical Engineering:

nachricht New technique makes brain scans better
22.06.2017 | Massachusetts Institute of Technology

nachricht New technology enables effective simultaneous testing for multiple blood-borne pathogens
13.06.2017 | Elsevier

All articles from Medical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Supersensitive through quantum entanglement

28.06.2017 | Physics and Astronomy

X-ray photoelectron spectroscopy under real ambient pressure conditions

28.06.2017 | Physics and Astronomy

Mice provide insight into genetics of autism spectrum disorders

28.06.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>