Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


A "Fantastic Voyage" Through the Body -- with Precision Control

TAU researcher develops capsule endoscope controlled by MRI to investigate digestive system

Endoscopes — small cameras or optic fibres that are usually attached to flexible tubing designed to investigate the interior of the body — can be dangerously invasive. Procedures often require sedative medications and some recovery time. Now a researcher at Tel Aviv University is developing a "capsule endoscope" that can move through the digestive tract to detect problems independent of any attachments.

A prototype of the "capsule" being tested at Brigham & Women's Hospital, Boston.

According to Dr. Gabor Kosa of TAU's School of Mechanical Engineering, the project is inspired by an endoscopic capsule designed for use in the small intestine. But unlike the existing capsule, which travels at random and snaps pictures every half second to give doctors an overall view of the intestines, the new "wireless" capsules will use the magnetic field of a magnetic resonance imaging (MRI) machine and electronic signals manipulated by those operating the capsule to forge a more precise and deliberate path.

It's a less invasive and more accurate way for doctors to get an important look at the digestive tract, where difficult-to-diagnose tumors or wounds may be hidden, or allow for treatments such as biopsies or local drug delivery. The technology, which was recently reported in Biomedical Microdevices, was developed in collaboration with Peter Jakab, an engineer from the Surgical Planning Laboratory at Brigham and Women's Hospital in Boston, affiliated with Harvard Medical School.

Swimming with the current

What sets this endoscope apart is its ability to actively explore the digestive tract under the direction of a doctor. To do this, the device relies on the magnetic field of the MRI machine as a "driving force," says Dr. Kosa. "An MRI has a very large constant magnetic field," he explains. "The capsule needs to navigate according to this field, like a sailboat sailing with the wind."

In order to help the capsules "swim" with the magnetic current, the researchers have given them "tails," a combination of copper coils and flexible polymer. The magnetic field creates a vibration in the tail which allows for movement, and electronics and microsensors embedded in the capsule allow the capsule's operator to manipulate the magnetic field that guides the movement of the device. The use of copper, a non-ferro magnetic material, circumvents other diagnostic challenges posed by MRI, Dr. Kosa adds. While most magnets interfere with MRI by obscuring the picture, copper appears as only a minor blot on otherwise clear film.

The ability to drive the capsule, Dr. Kosa says, will not only lead to better diagnosis capabilities, but patients will experience a less invasive procedure in a fraction of the time.

Microrobotics of the future

In the lab at the Brigham and Women's Hospital, Dr. Kosa and his fellow researchers have tested the driving mechanism of the capsule in an aquarium inside the MRI. The results have shown that the capsule can successfully be manipulated using a magnetic field. Moving forward, the researchers are hoping to further develop the capsule's endoscopic and signalling functions.

According to Dr. Kosa, a new faculty recruit to TAU, this project is part of a bright future for the field of microrobotics. At the university, his new research lab, called RBM2S, focuses on microsystems and robotics for biomedical applications, and an educational robotics lab, ERL, will teach future robotics experts studying at TAU's School of Mechanical Engineering.

George Hunka | EurekAlert!
Further information:

Further reports about: Control MRI Mechanical Engineering Tau electronic signal magnetic field

More articles from Medical Engineering:

nachricht Gentle sensors for diagnosing brain disorders
29.09.2016 | King Abdullah University of Science and Technology

nachricht New imaging technique in Alzheimer’s disease - opens up possibilities for new drug development
28.09.2016 | Lund University

All articles from Medical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>