Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A New Tool to Confront Lung Cancer

20.06.2014

Listen to an interview with Dr. Trudy Oliver about her lung cancer work on The Scope Radio

Only 15% of patients with squamous cell lung cancer – the second most common lung cancer – survive five years past diagnosis. Little is understood about how the deadly disease arises, preventing development of targeted therapies that could serve as a second line of defense once standard chemotherapy regimens fail.


microCT reconstruction of SCC tumor in mouse lung

Published online in Cell Reports on June 19, Huntsman Cancer Institute investigators report that misregulation of two genes, sox2 and lkb1, drives squamous cell lung cancer in mice. The discovery uncovers new treatment strategies, and provides a clinically relevant mouse model in which to test them.

“This is the most exciting thing we’ve done,” said senior author Trudy Oliver, Ph.D., an assistant professor of oncological sciences at the University of Utah and Huntsman Cancer Institute investigator. “Now that we have a model it unleashes so many questions we can ask to gain a better understanding of the disease.”

... more about:
»Cancer »HCI »Health »drugs »genes »mutations »pathways »tumors

By definition, tumors are groups of cells that are out of control. As a result, they acquire mutations, only some of which drive properties – such as excess growth and motility - that make cells cancerous. The trick for developing targeted therapies is to distinguish the “driver” from “passenger” mutations that are merely along for the ride.

Call it guilt by association, but Oliver’s team honed in on drivers of squamous cell carcinoma (SCC) of the lung by poring through documented gene abnormalities found in human SCCs. Sox2 was designated a prime candidate based on its overexpression in 60-90% of SCCs, and a frequent early appearance during tumor formation, suggesting it could be an initiator of cancer. Tumor suppressor genes were also candidates, including Lkb1, which is mutated in 5-19% of SCCs.

While disruption of either gene alone failed to trigger cancer, combining overexpression of sox2 in the lung with loss of lkb1 led to frequent development of lung SCC in mice.

“A pathologist looking under the microscope at our tumors would not know it’s from the mouse,” said Oliver. “They visually look like human tumors, and then when we stain them for biomarkers of the human disease, our mouse tumors light up for those markers.”

Unlike most previously existing lung SCC mouse models that develop multiple tumor types, the sox2/lkb1 model generates SCC exclusively. Combine this with the fact that it was created based on patient data makes the model clinically relevant, and well poised for testing novel targeted therapies.

“Beyond lung cancer, findings from this model may have important clinical implications for other squamous or Sox2-driven malignancies such as small cell lung cancer, and brain, esophageal, and oral cancers,” said Anandaroop Mukhopadhyay, Ph.D., Huntsman Cancer Institute scientist and lead author on the paper.

While there are no known drugs that directly target either Sox2 or Lkb1,
there are existing therapies that interfere with biochemical pathways that are thought to be activated by these genes. What’s more, the scientists found that these pathways, Jak-Stat and mTOR, were activated in tumors in the new mouse model. These findings suggest that the drugs that block these pathways, STAT3 and mTOR inhibitors, are good candidates for working as lung SCC targeted therapies.

“These are pathways that had not been previously explored for the treatment of squamous tumors because we didn’t realize they were important,” Oliver explained. “That gives us direction for testing the efficacy of drugs aimed at these pathways.”


Listen to an interview with Trudy Oliver about creation of the sox2/lkb1 mouse model on The Scope Radio
http://healthcare.utah.edu/the-scope/shows.php?shows=0_y8w0ys9x

Mukhopadhyay, K.C. Berrett, U. Kc, P.M. Clair, S.M. Pop, S.R. Carr, B.L. Witt, T.G. Oliver (2014) Sox2 cooperates with Lkb1 loss in a mouse model of squamous cell lung cancer. Cell Reports published online ahead of print, June 19, 2014
http://www.cell.com/cell-reports/abstract/S2211-1247%2814%2900430-6

This work was supported by DoD USAMRAA W81XWH-12-1-0211, The V Foundation for Cancer Research, Huntsman Cancer Foundation., and Damon Runyon Cancer Research Foundation

About Huntsman Cancer Institute at the University of Utah:
Huntsman Cancer Institute (HCI) is one of the world’s top academic research and cancer treatment centers. HCI manages the Utah Population Database - the largest genetic database in the world, with more than 16 million records linked to genealogies, health records, and vital statistics. Using this data, HCI researchers have identified cancer-causing genes, including the genes responsible for melanoma, colon and breast cancer, and paraganglioma. HCI is a member of the National Comprehensive Cancer Network (a 25-member alliance of the world's leading cancer centers) and is a National Cancer Institute-Designated Cancer Center. HCI treats patients with all forms of cancer and operates several high-risk clinics that focus on melanoma and breast, colon, and pancreas cancers. The HCI Cancer Learning Center for patient and public education contains one of the nation's largest collections of cancer-related publications. The institute is named after Jon M. Huntsman, Sr., a Utah philanthropist, industrialist, and cancer survivor.

Media Contacts
Linda Aagard
Director, Public Affairs , Huntsman Cancer Institute

Phone: 801-587-7639
Email: linda.aagard@hci.utah.edu

Linda Aagard | Eurek Alert!

Further reports about: Cancer HCI Health drugs genes mutations pathways tumors

More articles from Medical Engineering:

nachricht Medical gamma-ray camera is now palm-sized
23.05.2017 | Waseda University

nachricht Computer accurately identifies and delineates breast cancers on digital tissue slides
11.05.2017 | Case Western Reserve University

All articles from Medical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

How herpesviruses win the footrace against the immune system

26.05.2017 | Life Sciences

Water forms 'spine of hydration' around DNA, group finds

26.05.2017 | Life Sciences

First Juno science results supported by University of Leicester's Jupiter 'forecast'

26.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>