Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A Million Chances to Save a Life

27.02.2012
To celebrate February as American Heart Month, the News Blog is highlighting some of the latest heart-centric news and stories from all parts of Penn Medicine.
Would you be able to find an automated external defibrillator if someone’s life depended on it? Despite an estimated one million AEDs scattered around the United States, the answer, all too often when people suffer sudden cardiac arrests, is no.

In a Perspective piece published online this week in the journal Circulation: Cardiovascular Quality Outcomes, Penn Medicine emergency physician Dr. Raina Merchant outlines the tremendous potential associated with greater utilization of AEDs in public places. In cases of ventricular fibrillation – a wild, disorganized cardiac rhythm that leaves the heart unable to properly pump blood through the body, which is the leading cause of sudden cardiac death – quick use of an AED and CPR improve a patient’s chance of surviving by more than 50 percent.

But since the devices are sold through wholesalers, manufacturers have no way to track who purchases them and where they’re ultimately placed. That leaves two problems: No reliable way to connect bystanders with AEDs during emergencies, and no way to locate the devices during recalls or for regular servicing and inspection, like the process used to keep fire extinguishers in working order. Without a map of the devices, the more than 300,000 people who suffer cardiac arrest remain in great peril. Nationwide, just over 6 percent of these patients survive.
Merchant, along with her co-author, Dr. David Asch, executive director of Penn’s Leonard Davis Institute of Health Economics, envision a much brighter scenario, involving a massive search for the location of these one million lifesaving AEDs and the creation of an Internet and mobile app-based map to pair the devices with people willing to use them during cardiac arrests. In addition to making the map available via smart phone for bystanders, they also call for providing this information to local 911 dispatchers. A person calling for help after witnessing a cardiac arrest might then hear the following:

“Emergency Medical personnel are on their way. Continue chest compressions. There is an AED in the nearby bookstore, just at the checkout register. If available, send someone who is not performing chest compressions to retrieve the AED.”

Penn Medicine’s MyHeartMap Challenge, now in its third week, is taking a big step toward fulfilling that vision, by calling on Philadelphians to locate and help map all of the city’s AEDs. The 298 teams participating in the contest – who stand to win $10,000 if they’re the person or group to locate the largest number of the devices – are searching for AEDs in public places and snapping pictures of them on a special app for iPhones and Androids. Their submitted photos, tagged with location information will be used to create the type of interactive map Merchant suggests in her paper. Building on recent successes in utilizing crowdsourcing to solve science quandaries, and with a nod toward the public’s increasing reliance on smart phones to provide them with everything from reviews of nearby restaurants to the location of gas stations when their car is running on fumes, the Penn team hopes to tap into the ingenuity and power of today’s ultra-networked society to provide the data needed to put some real power behind the nation’s AEDs.

The fruits of this contest – especially if it can be replicated in other cities across the country – could lead not only to more immediate chances to save lives by putting defibrillators in the right hands at the right time, but also to new avenues for the study of best practices in resuscitation. Among questions a national AED database could help researchers answer: Was the device brought out for a real cardiac arrest? Did the device function properly? What prompted bystanders to play a role in caring for the patient? In the big picture, the Penn researchers hope that increased access to information on AED locations will buoy the nation’s perennially dismal cardiac arrest survival rates.

Holly Auer | EurekAlert!
Further information:
http://www.uphs.upenn.edu

More articles from Medical Engineering:

nachricht Virtual Reality in Medicine: New Opportunities for Diagnostics and Surgical Planning
07.12.2016 | Universität Basel

nachricht 3-D printed kidney phantoms aid nuclear medicine dosing calibration
06.12.2016 | Society of Nuclear Medicine

All articles from Medical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Closing the carbon loop

08.12.2016 | Life Sciences

Applicability of dynamic facilitation theory to binary hard disk systems

08.12.2016 | Physics and Astronomy

Scientists track chemical and structural evolution of catalytic nanoparticles in 3-D

08.12.2016 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>