Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A millimeter-scale, wirelessly powered cardiac device

03.09.2012
Stanford electrical engineers overturn existing models to demonstrate the feasibility of a millimeter-sized, wirelessly powered cardiac device

A team of engineers at Stanford has demonstrated the feasibility of a super-small, implantable cardiac device that gets its power not from batteries, but from radio waves transmitted from outside the body. The implanted device is contained in a cube just eight-tenths of a millimeter in radius. It could fit on the head of pin.

The findings were published in the journal Applied Physics Letters. In their paper, the researchers demonstrated wireless power transfer to a millimeter-sized device implanted five centimeters inside the chest on the surface of the heart—a depth once thought out of reach for wireless power transmission.

The paper's senior author was Ada Poon, a professor of electrical engineering at Stanford. Sanghoek Kim and John Ho, both doctoral candidates in Poon's lab, were first authors.

The engineers say the research is a major step toward a day when all implants are driven wirelessly. Beyond the heart, they believe such devices might include swallowable endoscopes—so-called "pillcams" that travel the digestive tract—permanent pacemakers and precision brain stimulators; virtually any medical applications where device size and power matter.

A revolution in the body

Implantable medical devices in the human body have revolutionized medicine. Hundreds of thousands if not millions of pacemakers, cochlear implants and drug pumps are today helping people live relatively normal lives, but these devices are not without engineering challenges.

First off, they require power, which means batteries, and batteries are bulky. In a device like a pacemaker, the battery alone accounts for as much as half the volume of the device it drives. Second, batteries have finite lives. New surgery is needed when they wane.

"Wireless power solves both challenges," said Poon.

Last year, Poon made headlines when she demonstrated a wirelessly powered, self-propelled device capable of swimming through the bloodstream. To get there she needed to overturn some long-held assumptions about delivery of wireless power through the human body.

Her device works by a combination inductive and radiative transmission of power. Both are types of electromagnetic transfer in which a transmitter sends radio waves to a coil of wire inside the body. The radio waves produce an electrical current in the coil sufficient to operate a small device.

There is an indirect relationship between the frequency of the transmitted radio waves and the size of the receive antenna. That is, to deliver a desired level of power, lower frequency waves require bigger coils. Higher frequency waves can work with smaller coils.

"For implantable medical devices, therefore, the goal is a high-frequency transmitter and a small receiver, but there is one big hurdle," explained Kim.

Ignoring consensus

Existing mathematical models have held that high frequency radio waves do not penetrate far enough into human tissue, necessitating the use of low-frequency transmitters and large antennas—too large to be practical for implantable devices.

Ignoring the consensus, Poon proved the models wrong. Human tissue dissipates electric fields quickly, it is true, but radio waves can travel in a different way—as alternating waves of electric and magnetic fields. With the correct equations in hand, she discovered that high-frequency signals travel much deeper than anyone suspected.

"In fact, to achieve greater power efficiency, it is actually advantageous that human tissue is a very poor electrical conductor," said Kim. "If it were a good conductor, it would absorb energy, create heating and prevent sufficient power from reaching the implant."

According to their revised models, the researchers found that the maximum power transfer through human tissue occurs at about 1.7 billion cycles per second.

"In this high-frequency range, we can increase power transfer by about ten times over earlier devices," said Ho, who honed the mathematical models.

The discovery meant that the team could shrink the receive antenna by a factor of ten as well, to a scale that makes wireless implantable devices feasible. At that the optimal frequency, a millimeter-radius coil is capable of harvesting more than 50 microwatts of power, well in excess of the needs of a recently demonstrated eight-microwatt pacemaker.

Additional challenges

With the dimensional challenges solved, the team found themselves bound in by other engineering constraints. First, electronic medical devices must meet stringent health standards established by the IEEE, particularly with regard to tissue heating. Second, the team found that receive and transmit antennas had to be optimally oriented to achieve maximum efficiency. Differences in alignment of just a few degrees could produce troubling drops in power.

"This can't happen with medical devices," said Poon. "As the human heart and body are in constant motion, solving this issue was critical to the success of our research."

The team responded by designing an innovative slotted transmit antenna structure. It delivers consistent power efficiency regardless of orientation of the two antennas.

The new design serves additionally to focus the radio waves precisely at the point inside the body where the implanted device rests on the surface of the heart, increasing the electric field where it is needed most, but canceling it elsewhere. This helps reduce overall tissue heating to levels well within the IEEE standards. Poon has applied for a patent for the antenna structure.

This research was made possible by funding from the C2S2 Focus Center, one of six research centers funded under the Focus Center Research Program (FCRP), a Semiconductor Research Corporation entity. Lisa Chen also contributed to this study.

This article was written by Andrew Myers, associate director of communications for the Stanford University School of Engineering.

Andrew Myers | EurekAlert!
Further information:
http://www.stanford.edu

More articles from Medical Engineering:

nachricht New technique makes brain scans better
22.06.2017 | Massachusetts Institute of Technology

nachricht New technology enables effective simultaneous testing for multiple blood-borne pathogens
13.06.2017 | Elsevier

All articles from Medical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Quantum thermometer or optical refrigerator?

23.06.2017 | Physics and Astronomy

A 100-year-old physics problem has been solved at EPFL

23.06.2017 | Physics and Astronomy

Equipping form with function

23.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>