Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A laser for your eyes

18.04.2016

The Lomonosov Moscow State University scientists developed a growth technology of single crystals for creating a unique eye-safe laser

A team of the Lomonosov Moscow State University scientists and the Belarusian National Technical University has created a unique laser, which is a compact light source with wavelengths harmless to the human eye. The development can be used in medicine, communications systems and also in research. The works are published in Journal of Crystal Growth and Optics Letters.


As-grown (Er,Yb):GdAl3(BO3)4 crystal by using high-temperature solution growth on dipped seeds (a) .

Source: Nikolay Leonyuk

'In collaboration with our colleagues of the Center for Optical Materials and Technologies, Belarusian National Technical University, we have developed a highly efficientdiode-pumped eye-safe laser, which can be used in ophthalmology, communication systems and ranging', says Nikolay Leonyuk, Professor, Department of Crystallography and Crystal Chemistry, Geological Faculty, the Lomonosov Moscow State University. The development of such laser became possible to the fact that the team of scientists had created a laboratory growth technology of single crystals with desired properties.

The emission with wavelengths of 1500 -- 1600 nm is agreeably safe for the eyes and seems prospective for practical applications in medicine, ranging (determining the distance from the observer to the object), communication systems andoptical location.

This feature is explained with, first, the fact that the light-refracting system of the eye (cornea and crystalline lens) have a sufficiently high absorption coefficient in this part of the spectrum, so only a small fraction of the energy reaches the sensitive retina. Second, the radiation in the 1500 -- 1600 nm spectral range suffers low losses passing through the atmosphere, and it makes advantages for their applications in telecoms.

To date, among the sources of radiation in this spectral range, the most widely used are the solid-state lasers based on phosphate glasses co-doped with Er (erbium), and Yb (ytterbium) ions. Such lasers are also relatively simple, compact and capable of operating in adjusted Q-mode required for producing short impulses. In the meantime, the main disadvantage restricting the usage of erbium phosphate glasses in continuous diodesystems is a low thermal conductivity of the matrix. To avoid such limitation, Er and Yb containing crystalline matrixcan be used.

In the issued research, GdAl3 (BO3)4 single crystals co-doped with Er and Yb were used to improve the efficiency of generation pulse energy and repetition rate, and henceto increase the maximal measurement range, reducing errors and time spending. These single crystalsare characterized by a record value of thermal conductivity and high thermochemical stability (decomposition at temperatures of 1280°C, resistant to corrosive environments) as well as mechanical strength.

'The created solid-state laser based on yttrium gadolinium borate crystals (Er,Yb:GdAl3 (BO3)4 is a unique compact source of emission with varying eye-safe wavelengths' says Nikolay Leonyuk. 'Reliable laser design, along with high performance makes it possible to be widely used in laser ranging systems, metrology andlaser-induced breakdown spectroscopy.'

Using of laser diode as a pump source increase the lifetime of laser up to 100 000 hours. The laser system is easy to use and plug and play, it does not require water cooling, as well as does not generate any vibration during laseroperations.

Compared with the widely used CW erbium fiber lasers, the (Er,Yb):GdAl3 (BO3)4-based laser is characterized by linear laser radiation and lower price.

Media Contact

Vladimir Koryagin
science-release@rector.msu.ru

http://www.msu.ru 

Vladimir Koryagin | EurekAlert!

More articles from Medical Engineering:

nachricht True to type: From human biopsy to complex gut physiology on a chip
14.02.2018 | Wyss Institute for Biologically Inspired Engineering at Harvard

nachricht The Scanpy software processes huge amounts of single-cell data
12.02.2018 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

All articles from Medical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

Im Focus: Hybrid optics bring color imaging using ultrathin metalenses into focus

For photographers and scientists, lenses are lifesavers. They reflect and refract light, making possible the imaging systems that drive discovery through the microscope and preserve history through cameras.

But today's glass-based lenses are bulky and resist miniaturization. Next-generation technologies, such as ultrathin cameras or tiny microscopes, require...

Im Focus: Stem cell divisions in the adult brain seen for the first time

Scientists from the University of Zurich have succeeded for the first time in tracking individual stem cells and their neuronal progeny over months within the intact adult brain. This study sheds light on how new neurons are produced throughout life.

The generation of new nerve cells was once thought to taper off at the end of embryonic development. However, recent research has shown that the adult brain...

Im Focus: Interference as a new method for cooling quantum devices

Theoretical physicists propose to use negative interference to control heat flow in quantum devices. Study published in Physical Review Letters

Quantum computer parts are sensitive and need to be cooled to very low temperatures. Their tiny size makes them particularly susceptible to a temperature...

Im Focus: Autonomous 3D scanner supports individual manufacturing processes

Let’s say the armrest is broken in your vintage car. As things stand, you would need a lot of luck and persistence to find the right spare part. But in the world of Industrie 4.0 and production with batch sizes of one, you can simply scan the armrest and print it out. This is made possible by the first ever 3D scanner capable of working autonomously and in real time. The autonomous scanning system will be on display at the Hannover Messe Preview on February 6 and at the Hannover Messe proper from April 23 to 27, 2018 (Hall 6, Booth A30).

Part of the charm of vintage cars is that they stopped making them long ago, so it is special when you do see one out on the roads. If something breaks or...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Fingerprints of quantum entanglement

16.02.2018 | Information Technology

'Living bandages': NUST MISIS scientists develop biocompatible anti-burn nanofibers

16.02.2018 | Health and Medicine

Hubble sees Neptune's mysterious shrinking storm

16.02.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>