Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A boost for medical imaging

11.10.2013
The A*STAR Institute of Microelectronics and nanoX Imaging Ltd join forces to develop a new medical X-ray imaging detector

In a move that promises to accelerate the development of a novel, highly sensitive X-ray imaging detector, the A*STAR Institute of Microelectronics (IME) has formed a collaborative partnership with the multinational start-up nanoX Imaging Ltd, a provider of medical imaging solutions.

The project is likely to offer improvements in current medical imaging technologies and the treatment of a number of serious human diseases.

The collaboration builds on the IME’s successful development of microelectromechanical systems (MEMS) devices for a broad range of biomedical applications. Dim-Lee Kwong, executive director of the IME, praises the strategic partnership as being well-timed to benefit the growing global market for medical technology products.

The X-ray imaging system, first developed in the 1890s, is the most widely used method of examining the body’s internal organs, tissues and bone structure that does not require invasive surgery. In recent years, dramatic advances have been made in the development of X-ray detectors, largely due to the rapid expansion of the semiconductor and thin-film industries. However, some abnormal tissues — such as cysts and tumors — remain difficult to detect with current technologies, unless examined using high levels of radiation, which can pose risks to the patient.

The IME–nanoX Imaging partnership aims to develop a high-performance and commercially viable MEMS-based X-ray imaging detector that employs field emission detection. Research will focus on enhancing detection sensitivity and improving digital signal processing performance, which could lead to earlier diagnoses that are made with greater accuracy and reduced exposure to radiation. “Image quality will continue to be the paramount criterion, and overcoming the current limitation will benefit all stakeholders in this industry,” adds Kwong.

Key to the collaboration is the institute’s experience and state-of-the-art facilities, which include advanced capabilities in silicon-based MEMS processes. “We sought a good 200-millimeter MEMS foundry over the world and finally came to the IME, recognizing its capabilities best fit our requirements as we planned for the transition from development to commercialization,” says Hitoshi Masuya, CEO of nanoX Imaging.

Since its founding in 1991, the IME has developed pioneering technologies that span the fields of bioelectronics, integrated circuits design and photonics. By actively engaging the wider semiconductor community and identifying global trends in advanced manufacturing, the IME is able to support the growth of emerging applications from the concept, design and prototype phases to full commercialization. Thus, extending the use of MEMS technology to incorporate X-ray imaging detectors will reinforce the IME’s expertise in developing innovative, cost-effective MEMS products and devices for real-world applications.

Through its partnership with the IME, nanoX Imaging joins an increasing number of biotechnology and nanotechnology companies that are establishing research ties and facilities within Singapore. Meanwhile, the IME continues to make a significant contribution to the country’s growing reputation as a hub of MEMS research and development through a variety of cooperative activities. These include co-presenting the MEMS Forum with SEMI, a global industry association that supports advances in the micro- and nanoelectronics industries. Held in May 2013, the forum brought together academics and industry experts to discuss and propose strategies for successfully taking innovative MEMS-based technologies to market.

About the Institute of Microelectronics

The Institute of Microelectronics (IME) is a research institute of the Science and Engineering Research Council of the Agency for Science, Technology and Research (A*STAR). Positioned to bridge the R&D between academia and industry, the IME’s mission is to add value to Singapore’s semiconductor industry by developing strategic competencies, innovative technologies and intellectual property; enabling enterprises to be technologically competitive; and cultivating a technology talent pool to inject new knowledge into the industry. Its key research areas are in integrated circuits design, advanced packaging, bioelectronics and medical devices, MEMS, nanoelectronics and photonics.

About nanoX Imaging Ltd

NanoX Imaging is a multinational start-up established in 2012 with business development and management services from top-of-the-line experts in the international medical industry, and technology development branching from a renowned electronic visual device project in the Far East. From bases in Israel, Japan and the United States, the company offers groundbreaking medical imaging solutions.

Associated links
http://www.research.a-star.edu.sg/feature-and-innovation/6807

A*STAR Research | Research asia research news
Further information:
http://www.a-star.edu.sg
http://www.researchsea.com

More articles from Medical Engineering:

nachricht Biocompatible 3-D tracking system has potential to improve robot-assisted surgery
17.02.2017 | Children's National Health System

nachricht Real-time MRI analysis powered by supercomputers
17.02.2017 | University of Texas at Austin, Texas Advanced Computing Center

All articles from Medical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Biocompatible 3-D tracking system has potential to improve robot-assisted surgery

17.02.2017 | Medical Engineering

Real-time MRI analysis powered by supercomputers

17.02.2017 | Medical Engineering

Antibiotic effective against drug-resistant bacteria in pediatric skin infections

17.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>