Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A boost for medical imaging

11.10.2013
The A*STAR Institute of Microelectronics and nanoX Imaging Ltd join forces to develop a new medical X-ray imaging detector

In a move that promises to accelerate the development of a novel, highly sensitive X-ray imaging detector, the A*STAR Institute of Microelectronics (IME) has formed a collaborative partnership with the multinational start-up nanoX Imaging Ltd, a provider of medical imaging solutions.

The project is likely to offer improvements in current medical imaging technologies and the treatment of a number of serious human diseases.

The collaboration builds on the IME’s successful development of microelectromechanical systems (MEMS) devices for a broad range of biomedical applications. Dim-Lee Kwong, executive director of the IME, praises the strategic partnership as being well-timed to benefit the growing global market for medical technology products.

The X-ray imaging system, first developed in the 1890s, is the most widely used method of examining the body’s internal organs, tissues and bone structure that does not require invasive surgery. In recent years, dramatic advances have been made in the development of X-ray detectors, largely due to the rapid expansion of the semiconductor and thin-film industries. However, some abnormal tissues — such as cysts and tumors — remain difficult to detect with current technologies, unless examined using high levels of radiation, which can pose risks to the patient.

The IME–nanoX Imaging partnership aims to develop a high-performance and commercially viable MEMS-based X-ray imaging detector that employs field emission detection. Research will focus on enhancing detection sensitivity and improving digital signal processing performance, which could lead to earlier diagnoses that are made with greater accuracy and reduced exposure to radiation. “Image quality will continue to be the paramount criterion, and overcoming the current limitation will benefit all stakeholders in this industry,” adds Kwong.

Key to the collaboration is the institute’s experience and state-of-the-art facilities, which include advanced capabilities in silicon-based MEMS processes. “We sought a good 200-millimeter MEMS foundry over the world and finally came to the IME, recognizing its capabilities best fit our requirements as we planned for the transition from development to commercialization,” says Hitoshi Masuya, CEO of nanoX Imaging.

Since its founding in 1991, the IME has developed pioneering technologies that span the fields of bioelectronics, integrated circuits design and photonics. By actively engaging the wider semiconductor community and identifying global trends in advanced manufacturing, the IME is able to support the growth of emerging applications from the concept, design and prototype phases to full commercialization. Thus, extending the use of MEMS technology to incorporate X-ray imaging detectors will reinforce the IME’s expertise in developing innovative, cost-effective MEMS products and devices for real-world applications.

Through its partnership with the IME, nanoX Imaging joins an increasing number of biotechnology and nanotechnology companies that are establishing research ties and facilities within Singapore. Meanwhile, the IME continues to make a significant contribution to the country’s growing reputation as a hub of MEMS research and development through a variety of cooperative activities. These include co-presenting the MEMS Forum with SEMI, a global industry association that supports advances in the micro- and nanoelectronics industries. Held in May 2013, the forum brought together academics and industry experts to discuss and propose strategies for successfully taking innovative MEMS-based technologies to market.

About the Institute of Microelectronics

The Institute of Microelectronics (IME) is a research institute of the Science and Engineering Research Council of the Agency for Science, Technology and Research (A*STAR). Positioned to bridge the R&D between academia and industry, the IME’s mission is to add value to Singapore’s semiconductor industry by developing strategic competencies, innovative technologies and intellectual property; enabling enterprises to be technologically competitive; and cultivating a technology talent pool to inject new knowledge into the industry. Its key research areas are in integrated circuits design, advanced packaging, bioelectronics and medical devices, MEMS, nanoelectronics and photonics.

About nanoX Imaging Ltd

NanoX Imaging is a multinational start-up established in 2012 with business development and management services from top-of-the-line experts in the international medical industry, and technology development branching from a renowned electronic visual device project in the Far East. From bases in Israel, Japan and the United States, the company offers groundbreaking medical imaging solutions.

Associated links
http://www.research.a-star.edu.sg/feature-and-innovation/6807

A*STAR Research | Research asia research news
Further information:
http://www.a-star.edu.sg
http://www.researchsea.com

More articles from Medical Engineering:

nachricht PET identifies which prostate cancer patients can benefit from salvage radiation treatment
05.12.2017 | Society of Nuclear Medicine and Molecular Imaging

nachricht Designing a golden nanopill
01.12.2017 | University of Texas at Austin, Texas Advanced Computing Center

All articles from Medical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Long-lived storage of a photonic qubit for worldwide teleportation

12.12.2017 | Physics and Astronomy

Multi-year submarine-canyon study challenges textbook theories about turbidity currents

12.12.2017 | Earth Sciences

Electromagnetic water cloak eliminates drag and wake

12.12.2017 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>