Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A boost for medical imaging

11.10.2013
The A*STAR Institute of Microelectronics and nanoX Imaging Ltd join forces to develop a new medical X-ray imaging detector

In a move that promises to accelerate the development of a novel, highly sensitive X-ray imaging detector, the A*STAR Institute of Microelectronics (IME) has formed a collaborative partnership with the multinational start-up nanoX Imaging Ltd, a provider of medical imaging solutions.

The project is likely to offer improvements in current medical imaging technologies and the treatment of a number of serious human diseases.

The collaboration builds on the IME’s successful development of microelectromechanical systems (MEMS) devices for a broad range of biomedical applications. Dim-Lee Kwong, executive director of the IME, praises the strategic partnership as being well-timed to benefit the growing global market for medical technology products.

The X-ray imaging system, first developed in the 1890s, is the most widely used method of examining the body’s internal organs, tissues and bone structure that does not require invasive surgery. In recent years, dramatic advances have been made in the development of X-ray detectors, largely due to the rapid expansion of the semiconductor and thin-film industries. However, some abnormal tissues — such as cysts and tumors — remain difficult to detect with current technologies, unless examined using high levels of radiation, which can pose risks to the patient.

The IME–nanoX Imaging partnership aims to develop a high-performance and commercially viable MEMS-based X-ray imaging detector that employs field emission detection. Research will focus on enhancing detection sensitivity and improving digital signal processing performance, which could lead to earlier diagnoses that are made with greater accuracy and reduced exposure to radiation. “Image quality will continue to be the paramount criterion, and overcoming the current limitation will benefit all stakeholders in this industry,” adds Kwong.

Key to the collaboration is the institute’s experience and state-of-the-art facilities, which include advanced capabilities in silicon-based MEMS processes. “We sought a good 200-millimeter MEMS foundry over the world and finally came to the IME, recognizing its capabilities best fit our requirements as we planned for the transition from development to commercialization,” says Hitoshi Masuya, CEO of nanoX Imaging.

Since its founding in 1991, the IME has developed pioneering technologies that span the fields of bioelectronics, integrated circuits design and photonics. By actively engaging the wider semiconductor community and identifying global trends in advanced manufacturing, the IME is able to support the growth of emerging applications from the concept, design and prototype phases to full commercialization. Thus, extending the use of MEMS technology to incorporate X-ray imaging detectors will reinforce the IME’s expertise in developing innovative, cost-effective MEMS products and devices for real-world applications.

Through its partnership with the IME, nanoX Imaging joins an increasing number of biotechnology and nanotechnology companies that are establishing research ties and facilities within Singapore. Meanwhile, the IME continues to make a significant contribution to the country’s growing reputation as a hub of MEMS research and development through a variety of cooperative activities. These include co-presenting the MEMS Forum with SEMI, a global industry association that supports advances in the micro- and nanoelectronics industries. Held in May 2013, the forum brought together academics and industry experts to discuss and propose strategies for successfully taking innovative MEMS-based technologies to market.

About the Institute of Microelectronics

The Institute of Microelectronics (IME) is a research institute of the Science and Engineering Research Council of the Agency for Science, Technology and Research (A*STAR). Positioned to bridge the R&D between academia and industry, the IME’s mission is to add value to Singapore’s semiconductor industry by developing strategic competencies, innovative technologies and intellectual property; enabling enterprises to be technologically competitive; and cultivating a technology talent pool to inject new knowledge into the industry. Its key research areas are in integrated circuits design, advanced packaging, bioelectronics and medical devices, MEMS, nanoelectronics and photonics.

About nanoX Imaging Ltd

NanoX Imaging is a multinational start-up established in 2012 with business development and management services from top-of-the-line experts in the international medical industry, and technology development branching from a renowned electronic visual device project in the Far East. From bases in Israel, Japan and the United States, the company offers groundbreaking medical imaging solutions.

Associated links
http://www.research.a-star.edu.sg/feature-and-innovation/6807

A*STAR Research | Research asia research news
Further information:
http://www.a-star.edu.sg
http://www.researchsea.com

More articles from Medical Engineering:

nachricht Self-powered paper-based 'SPEDs' may lead to new medical-diagnostic tools
23.08.2017 | Purdue University

nachricht New technique to treating mitral valve diseases: First patient data
22.08.2017 | Universitätsspital Bern

All articles from Medical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

What the world's tiniest 'monster truck' reveals

23.08.2017 | Life Sciences

Treating arthritis with algae

23.08.2017 | Life Sciences

Witnessing turbulent motion in the atmosphere of a distant star

23.08.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>