Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A boost for medical imaging

11.10.2013
The A*STAR Institute of Microelectronics and nanoX Imaging Ltd join forces to develop a new medical X-ray imaging detector

In a move that promises to accelerate the development of a novel, highly sensitive X-ray imaging detector, the A*STAR Institute of Microelectronics (IME) has formed a collaborative partnership with the multinational start-up nanoX Imaging Ltd, a provider of medical imaging solutions.

The project is likely to offer improvements in current medical imaging technologies and the treatment of a number of serious human diseases.

The collaboration builds on the IME’s successful development of microelectromechanical systems (MEMS) devices for a broad range of biomedical applications. Dim-Lee Kwong, executive director of the IME, praises the strategic partnership as being well-timed to benefit the growing global market for medical technology products.

The X-ray imaging system, first developed in the 1890s, is the most widely used method of examining the body’s internal organs, tissues and bone structure that does not require invasive surgery. In recent years, dramatic advances have been made in the development of X-ray detectors, largely due to the rapid expansion of the semiconductor and thin-film industries. However, some abnormal tissues — such as cysts and tumors — remain difficult to detect with current technologies, unless examined using high levels of radiation, which can pose risks to the patient.

The IME–nanoX Imaging partnership aims to develop a high-performance and commercially viable MEMS-based X-ray imaging detector that employs field emission detection. Research will focus on enhancing detection sensitivity and improving digital signal processing performance, which could lead to earlier diagnoses that are made with greater accuracy and reduced exposure to radiation. “Image quality will continue to be the paramount criterion, and overcoming the current limitation will benefit all stakeholders in this industry,” adds Kwong.

Key to the collaboration is the institute’s experience and state-of-the-art facilities, which include advanced capabilities in silicon-based MEMS processes. “We sought a good 200-millimeter MEMS foundry over the world and finally came to the IME, recognizing its capabilities best fit our requirements as we planned for the transition from development to commercialization,” says Hitoshi Masuya, CEO of nanoX Imaging.

Since its founding in 1991, the IME has developed pioneering technologies that span the fields of bioelectronics, integrated circuits design and photonics. By actively engaging the wider semiconductor community and identifying global trends in advanced manufacturing, the IME is able to support the growth of emerging applications from the concept, design and prototype phases to full commercialization. Thus, extending the use of MEMS technology to incorporate X-ray imaging detectors will reinforce the IME’s expertise in developing innovative, cost-effective MEMS products and devices for real-world applications.

Through its partnership with the IME, nanoX Imaging joins an increasing number of biotechnology and nanotechnology companies that are establishing research ties and facilities within Singapore. Meanwhile, the IME continues to make a significant contribution to the country’s growing reputation as a hub of MEMS research and development through a variety of cooperative activities. These include co-presenting the MEMS Forum with SEMI, a global industry association that supports advances in the micro- and nanoelectronics industries. Held in May 2013, the forum brought together academics and industry experts to discuss and propose strategies for successfully taking innovative MEMS-based technologies to market.

About the Institute of Microelectronics

The Institute of Microelectronics (IME) is a research institute of the Science and Engineering Research Council of the Agency for Science, Technology and Research (A*STAR). Positioned to bridge the R&D between academia and industry, the IME’s mission is to add value to Singapore’s semiconductor industry by developing strategic competencies, innovative technologies and intellectual property; enabling enterprises to be technologically competitive; and cultivating a technology talent pool to inject new knowledge into the industry. Its key research areas are in integrated circuits design, advanced packaging, bioelectronics and medical devices, MEMS, nanoelectronics and photonics.

About nanoX Imaging Ltd

NanoX Imaging is a multinational start-up established in 2012 with business development and management services from top-of-the-line experts in the international medical industry, and technology development branching from a renowned electronic visual device project in the Far East. From bases in Israel, Japan and the United States, the company offers groundbreaking medical imaging solutions.

Associated links
http://www.research.a-star.edu.sg/feature-and-innovation/6807

A*STAR Research | Research asia research news
Further information:
http://www.a-star.edu.sg
http://www.researchsea.com

More articles from Medical Engineering:

nachricht Visualizing gene expression with MRI
23.12.2016 | California Institute of Technology

nachricht Illuminating cancer: Researchers invent a pH threshold sensor to improve cancer surgery
21.12.2016 | UT Southwestern Medical Center

All articles from Medical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>