Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

3D technology from the film industry improve rehabilitation for stroke patients

18.12.2013
Researchers in Gothenburg have been using 3D technology from the film industry to analyze the everyday movements of stroke patients.

The results, which are reported in a doctoral thesis at the Sahlgrenska Academy, indicate that computerized motion analysis increases our knowledge of how stroke patients can improve their ability to move through rehabilitation.

In the film and video game industry, motion capture technology is used to convert people's movements into computer animations – famous examples include the character Gollum from the Lord of the Rings and Na'vi from the blockbuster film Avatar.

Margit Alt Murphy and her research colleagues at the Sahlgrenska Academy, University of Gothenburg, have brought the technology into the research laboratory.

In a unique study, researchers used motion-capture technology to film everyday movements among roughly one hundred people, both healthy people and people who suffered a stroke.

The 3D animations have provided a completely new level of detail in terms of mobility in stroke patients – knowledge that can help patients achieve more effective rehabilitation.

"Computer technology provides better and more objective documentation of the problem in terms of the everyday life of the patient than what human observation can provide. With 3D technology, we can measure a patient's movements in terms of numbers, which means that small changes in the motion pattern can be detected and can be fed back to the patient in a clear manner," says Margit Alt Murphy.

"Our results show that computerized motion analysis could be a complement to a physician's clinical diagnosis and an important tool in diagnosing motion problems".

Simple for patients

The technology is highly advanced, but for the patient, the method is simple.

In the study, the test subjects were equipped with small, round reflex balls on their arm, trunk and head, and they were then instructed to drink water out of a glass. The motion is documented by high-speed cameras whose infrared light is reflected by the balls and sent back to the computer where they create a 3D animated image in the form of a stick figure.

"With 3D animation, we can measure the joint angle, speed and smoothness of the arm motion, as well as which compensating motion patterns the stroke patient is using. This give us a measurement for the motion that we can compare with an optimal arm motion in a healthy person," says Margit Alt Murphy.

"Our study shows that the time it takes to perform an activity is strongly related to the motion quality. Even if this technology is not available, we can still obtain very valuable information about the stroke patient's mobility by timing a highly standardized activity, and every therapist keeps a stopwatch in their pocket," says Margit Alt Murphy.

The dissertation Development and validation of upper extremity kinematic movement analysis for people with stroke - Reaching and drinking from a glass underwent an oral defense on December 6th.

Contact:
Margit Alt Murphy, doctoral student at the Sahlgrenska Academy, University of Gothenburg
031-3423267
margit.alt-murphy@neuro.gu.se
Principal advisor: Professor Katharina Stibrant Sunnerhagen;ks.sunnerhagen@neuro.gu.se

Torsten Arpi | idw
Further information:
http://www.gu.se
http://gupea.ub.gu.se/handle/2077/33117

More articles from Medical Engineering:

nachricht Visualizing gene expression with MRI
23.12.2016 | California Institute of Technology

nachricht Illuminating cancer: Researchers invent a pH threshold sensor to improve cancer surgery
21.12.2016 | UT Southwestern Medical Center

All articles from Medical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>