Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

3D technology from the film industry improve rehabilitation for stroke patients

18.12.2013
Researchers in Gothenburg have been using 3D technology from the film industry to analyze the everyday movements of stroke patients.

The results, which are reported in a doctoral thesis at the Sahlgrenska Academy, indicate that computerized motion analysis increases our knowledge of how stroke patients can improve their ability to move through rehabilitation.

In the film and video game industry, motion capture technology is used to convert people's movements into computer animations – famous examples include the character Gollum from the Lord of the Rings and Na'vi from the blockbuster film Avatar.

Margit Alt Murphy and her research colleagues at the Sahlgrenska Academy, University of Gothenburg, have brought the technology into the research laboratory.

In a unique study, researchers used motion-capture technology to film everyday movements among roughly one hundred people, both healthy people and people who suffered a stroke.

The 3D animations have provided a completely new level of detail in terms of mobility in stroke patients – knowledge that can help patients achieve more effective rehabilitation.

"Computer technology provides better and more objective documentation of the problem in terms of the everyday life of the patient than what human observation can provide. With 3D technology, we can measure a patient's movements in terms of numbers, which means that small changes in the motion pattern can be detected and can be fed back to the patient in a clear manner," says Margit Alt Murphy.

"Our results show that computerized motion analysis could be a complement to a physician's clinical diagnosis and an important tool in diagnosing motion problems".

Simple for patients

The technology is highly advanced, but for the patient, the method is simple.

In the study, the test subjects were equipped with small, round reflex balls on their arm, trunk and head, and they were then instructed to drink water out of a glass. The motion is documented by high-speed cameras whose infrared light is reflected by the balls and sent back to the computer where they create a 3D animated image in the form of a stick figure.

"With 3D animation, we can measure the joint angle, speed and smoothness of the arm motion, as well as which compensating motion patterns the stroke patient is using. This give us a measurement for the motion that we can compare with an optimal arm motion in a healthy person," says Margit Alt Murphy.

"Our study shows that the time it takes to perform an activity is strongly related to the motion quality. Even if this technology is not available, we can still obtain very valuable information about the stroke patient's mobility by timing a highly standardized activity, and every therapist keeps a stopwatch in their pocket," says Margit Alt Murphy.

The dissertation Development and validation of upper extremity kinematic movement analysis for people with stroke - Reaching and drinking from a glass underwent an oral defense on December 6th.

Contact:
Margit Alt Murphy, doctoral student at the Sahlgrenska Academy, University of Gothenburg
031-3423267
margit.alt-murphy@neuro.gu.se
Principal advisor: Professor Katharina Stibrant Sunnerhagen;ks.sunnerhagen@neuro.gu.se

Torsten Arpi | idw
Further information:
http://www.gu.se
http://gupea.ub.gu.se/handle/2077/33117

More articles from Medical Engineering:

nachricht Novel PET tracer identifies most bacterial infections
06.10.2017 | Society of Nuclear Medicine and Molecular Imaging

nachricht Teleoperating robots with virtual reality
05.10.2017 | Massachusetts Institute of Technology, CSAIL

All articles from Medical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Osaka university researchers make the slipperiest surfaces adhesive

18.10.2017 | Materials Sciences

Space radiation won't stop NASA's human exploration

18.10.2017 | Physics and Astronomy

Los Alamos researchers and supercomputers help interpret the latest LIGO findings

18.10.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>