Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

3D technology from the film industry improve rehabilitation for stroke patients

18.12.2013
Researchers in Gothenburg have been using 3D technology from the film industry to analyze the everyday movements of stroke patients.

The results, which are reported in a doctoral thesis at the Sahlgrenska Academy, indicate that computerized motion analysis increases our knowledge of how stroke patients can improve their ability to move through rehabilitation.

In the film and video game industry, motion capture technology is used to convert people's movements into computer animations – famous examples include the character Gollum from the Lord of the Rings and Na'vi from the blockbuster film Avatar.

Margit Alt Murphy and her research colleagues at the Sahlgrenska Academy, University of Gothenburg, have brought the technology into the research laboratory.

In a unique study, researchers used motion-capture technology to film everyday movements among roughly one hundred people, both healthy people and people who suffered a stroke.

The 3D animations have provided a completely new level of detail in terms of mobility in stroke patients – knowledge that can help patients achieve more effective rehabilitation.

"Computer technology provides better and more objective documentation of the problem in terms of the everyday life of the patient than what human observation can provide. With 3D technology, we can measure a patient's movements in terms of numbers, which means that small changes in the motion pattern can be detected and can be fed back to the patient in a clear manner," says Margit Alt Murphy.

"Our results show that computerized motion analysis could be a complement to a physician's clinical diagnosis and an important tool in diagnosing motion problems".

Simple for patients

The technology is highly advanced, but for the patient, the method is simple.

In the study, the test subjects were equipped with small, round reflex balls on their arm, trunk and head, and they were then instructed to drink water out of a glass. The motion is documented by high-speed cameras whose infrared light is reflected by the balls and sent back to the computer where they create a 3D animated image in the form of a stick figure.

"With 3D animation, we can measure the joint angle, speed and smoothness of the arm motion, as well as which compensating motion patterns the stroke patient is using. This give us a measurement for the motion that we can compare with an optimal arm motion in a healthy person," says Margit Alt Murphy.

"Our study shows that the time it takes to perform an activity is strongly related to the motion quality. Even if this technology is not available, we can still obtain very valuable information about the stroke patient's mobility by timing a highly standardized activity, and every therapist keeps a stopwatch in their pocket," says Margit Alt Murphy.

The dissertation Development and validation of upper extremity kinematic movement analysis for people with stroke - Reaching and drinking from a glass underwent an oral defense on December 6th.

Contact:
Margit Alt Murphy, doctoral student at the Sahlgrenska Academy, University of Gothenburg
031-3423267
margit.alt-murphy@neuro.gu.se
Principal advisor: Professor Katharina Stibrant Sunnerhagen;ks.sunnerhagen@neuro.gu.se

Torsten Arpi | idw
Further information:
http://www.gu.se
http://gupea.ub.gu.se/handle/2077/33117

More articles from Medical Engineering:

nachricht An LED-based device for imaging radiation induced skin damage
30.03.2017 | The Optical Society

nachricht A Challenging European Research Project to Develop New Tiny Microscopes
28.03.2017 | Technische Universität Braunschweig

All articles from Medical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

'On-off switch' brings researchers a step closer to potential HIV vaccine

30.03.2017 | Health and Medicine

Penn studies find promise for innovations in liquid biopsies

30.03.2017 | Health and Medicine

An LED-based device for imaging radiation induced skin damage

30.03.2017 | Medical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>