3D research model tackles prostate cancer spread

Shirly Sieh, a PhD student at IHBI, is studying the way cancer cells escape from the prostate through the bloodstream to form tumour colonies, most often in the spine and long bones.

“It is an innovative study which uses a tissue engineering platform technology developed by IHBI's Professor Dietmar W. Hutmacher in order to investigate the interaction between bones and cancer cells,” Ms Sieh said.

“Tissue-engineered bone provides the 3D architecture for the cancer cells which more closely resemble bone metastasis instead of growing the cancer cells and bone cells on a flat Petrie dish.

“I am growing prostate cancer cells on the tissue-engineered bone to observe the interactions between the cells and the surrounding tissue so it is a way of mimicking the cancer cells invading the bone environment.”

Ms Sieh said it was still not clear to researchers how bones and cancer cells interacted.

“With this 3D method we can see if and how the cancer cells 'set up home' in the bone cells,” she said.

“We want to study how the cancer cells degrade the matrix, or the mix of proteins and growth factors produced by these cells, and remodel the environment to suit the cancer cells to grow a tumour.”

Ms Sieh said scientists also wanted to understand why prostate cancer cells were attracted to the bone sites. She and Amy Lubik, a PhD student supervised by Professor Colleen Nelson, are studying the effect the cancer cells in the bone have on male hormone production, particularly on the hormone, androgen.

“People with advanced cancer who have had prostate removal surgery should have low levels of androgen and the cancer cells should be suppressed. However, sometimes the cancer cells do recur,” she said.

“We think it might have something to do with the fact that the cancer cells are very sensitive to androgen and even low levels of androgen in the body could promote the growth of these cancer cells.”

Ms Sieh said previous research had found that when the prostate cancer cells changed the bone environment they eventually induced more bone formation.

“But it is very abnormal growth which can cause bone fractures and painful spinal compression for the person,” she said.

Ms Sieh's research is supervised by an interdisciplinary team made up of Professors Hutmacher, Judith Clements and Colleen Nelson, director of the federally-funded Australian Prostate Cancer Research Centre – Queensland located at Princess Alexandra Hospital campus and hosted by QUT.

Media Contact

Niki Widdowson EurekAlert!

More Information:

http://www.qut.edu.au

All latest news from the category: Medical Engineering

The development of medical equipment, products and technical procedures is characterized by high research and development costs in a variety of fields related to the study of human medicine.

innovations-report provides informative and stimulating reports and articles on topics ranging from imaging processes, cell and tissue techniques, optical techniques, implants, orthopedic aids, clinical and medical office equipment, dialysis systems and x-ray/radiation monitoring devices to endoscopy, ultrasound, surgical techniques, and dental materials.

Back to home

Comments (0)

Write a comment

Newest articles

Lighting up the future

New multidisciplinary research from the University of St Andrews could lead to more efficient televisions, computer screens and lighting. Researchers at the Organic Semiconductor Centre in the School of Physics and…

Researchers crack sugarcane’s complex genetic code

Sweet success: Scientists created a highly accurate reference genome for one of the most important modern crops and found a rare example of how genes confer disease resistance in plants….

Evolution of the most powerful ocean current on Earth

The Antarctic Circumpolar Current plays an important part in global overturning circulation, the exchange of heat and CO2 between the ocean and atmosphere, and the stability of Antarctica’s ice sheets….

Partners & Sponsors