Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

3D research model tackles prostate cancer spread

28.04.2009
One of the few research projects to study the spread of prostate cancer to the bones using three-dimensional models of tissue-engineered bone is underway at QUT's Institute of Health and Biomedical Innovation (IHBI).

Shirly Sieh, a PhD student at IHBI, is studying the way cancer cells escape from the prostate through the bloodstream to form tumour colonies, most often in the spine and long bones.

"It is an innovative study which uses a tissue engineering platform technology developed by IHBI's Professor Dietmar W. Hutmacher in order to investigate the interaction between bones and cancer cells," Ms Sieh said.

"Tissue-engineered bone provides the 3D architecture for the cancer cells which more closely resemble bone metastasis instead of growing the cancer cells and bone cells on a flat Petrie dish.

"I am growing prostate cancer cells on the tissue-engineered bone to observe the interactions between the cells and the surrounding tissue so it is a way of mimicking the cancer cells invading the bone environment."

Ms Sieh said it was still not clear to researchers how bones and cancer cells interacted.

"With this 3D method we can see if and how the cancer cells 'set up home' in the bone cells," she said.

"We want to study how the cancer cells degrade the matrix, or the mix of proteins and growth factors produced by these cells, and remodel the environment to suit the cancer cells to grow a tumour."

Ms Sieh said scientists also wanted to understand why prostate cancer cells were attracted to the bone sites. She and Amy Lubik, a PhD student supervised by Professor Colleen Nelson, are studying the effect the cancer cells in the bone have on male hormone production, particularly on the hormone, androgen.

"People with advanced cancer who have had prostate removal surgery should have low levels of androgen and the cancer cells should be suppressed. However, sometimes the cancer cells do recur," she said.

"We think it might have something to do with the fact that the cancer cells are very sensitive to androgen and even low levels of androgen in the body could promote the growth of these cancer cells."

Ms Sieh said previous research had found that when the prostate cancer cells changed the bone environment they eventually induced more bone formation.

"But it is very abnormal growth which can cause bone fractures and painful spinal compression for the person," she said.

Ms Sieh's research is supervised by an interdisciplinary team made up of Professors Hutmacher, Judith Clements and Colleen Nelson, director of the federally-funded Australian Prostate Cancer Research Centre - Queensland located at Princess Alexandra Hospital campus and hosted by QUT.

Niki Widdowson | EurekAlert!
Further information:
http://www.qut.edu.au

More articles from Medical Engineering:

nachricht New imaging technique able to watch molecular dynamics of neurodegenerative diseases
14.07.2017 | The Optical Society

nachricht Quick test finds signs of sepsis in a single drop of blood
03.07.2017 | University of Illinois at Urbana-Champaign

All articles from Medical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

Im Focus: On the way to a biological alternative

A bacterial enzyme enables reactions that open up alternatives to key industrial chemical processes

The research team of Prof. Dr. Oliver Einsle at the University of Freiburg's Institute of Biochemistry has long been exploring the functioning of nitrogenase....

Im Focus: The 1 trillion tonne iceberg

Larsen C Ice Shelf rift finally breaks through

A one trillion tonne iceberg - one of the biggest ever recorded -- has calved away from the Larsen C Ice Shelf in Antarctica, after a rift in the ice,...

Im Focus: Laser-cooled ions contribute to better understanding of friction

Physics supports biology: Researchers from PTB have developed a model system to investigate friction phenomena with atomic precision

Friction: what you want from car brakes, otherwise rather a nuisance. In any case, it is useful to know as precisely as possible how friction phenomena arise –...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

The technology with a feel for feelings

12.07.2017 | Event News

 
Latest News

NASA looks to solar eclipse to help understand Earth's energy system

21.07.2017 | Earth Sciences

Stanford researchers develop a new type of soft, growing robot

21.07.2017 | Power and Electrical Engineering

Vortex photons from electrons in circular motion

21.07.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>