Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

3D-printed Splint Saves Infant’s Life

11.07.2013
Half a millennium after Johannes Gutenberg printed the bible, researchers printed a 3D splint that saved the life of an infant born with severe tracheobronchomalacia, a birth defect that causes the airway to collapse.

While similar surgeries have been preformed using tissue donations and windpipes created from stem cells, this is the first time 3D printing has been used to treat tracheobronchomalacia—at least in a human.

Matthew Wheeler, a University of Illinois Professor of Animal Sciences and member of the Regenerative Biology and Tissue Engineering research theme at the Institute for Genomic Biology (IGB), worked with a team of five researchers to test 3D-printed, bioresorbable airway splints in porcine, or pig, animal models with severe, life-threatening tracheobronchomalacia.

“If the promise of tissue engineering is going to be realized, our translational research must be ‘translated’ from our laboratory and experimental surgery suite to the hospital and clinic,” Wheeler said. “The large-animal model is the roadway to take this device from the bench top to the bedside.”

For more than 40 years, pigs have served as medical research models because their physiology is very similar to humans. In addition to tracheobronchomalacia, pigs have been biomedical models for muscular dystrophy, diabetes, and other diseases. The team chose to use two-month-old pigs for this study because their tracheas have similar biomechanical and anatomical properties to a growing human trachea.

“Essentially, all our breakthroughs in human clinical medicine have been initially tested or perfected in animal models,” Wheeler said. “Through the use of animal models, scientists and doctors are able to perfect techniques, drugs, and materials without risking human lives.”

First, Wheeler sent a CT scan of a pig’s trachea to Scott Hollister, a professor of biomedical engineering at the University of Michigan. Hollister used the CT scan and a 3D CAD program to design and print the splints. These devices were made from an FDA-approved material called polycaprolactone or PCL, which Wheeler has used in more than 100 large-animal procedures.

Next, Wheeler developed a strategy to implement the device and U-M associate professor of pediatric otolaryngology Glenn Green carried out the surgical procedure. After the splint was placed, the pigs’ tracheobronchomalacia symptoms disappeared.

“All of our work is physician inspired,” Wheeler said. “Babies suffering from tracheobronchomalacia were brought to ear, nose and throat surgeons, but they didn’t have any treatment options. They turned to us to engineer a cure.”

Kaiba (KEYE'-buh) Gionfriddo was six weeks old when he suddenly stopped breathing and turned blue at a restaurant with his parents. As a result of severe tracheobronchomalacia, his heart would often stop beating, and despite the aid of a mechanical ventilator, he had to be resuscitated daily by doctors.

April and Bryan Gionfriddo believed their son’s chance of survival was slim until Marc Nelson, a doctor at Akron Children’s Hospital in Ohio, mentioned researchers from the University of Michigan were testing airway splints similar to those used in Wheeler’s study.

After obtaining emergency clearance from the Food and Drug Administration, Hollister and Green used computer-guided lasers to print, stack, and fuse thin layers of plastic to make up Kaiba’s splint.

The splint was sewn around Kaiba’s airway to expand his collapsed bronchus and provide support for tissue growth. A slit in the side of the splint allows it to expand as Kaiba’s airway grows. In about three years, after Kaiba’s trachea has reconstructed itself, his body will reabsorb the splint as the PCL degrades.

Soon Kaiba’s tracheotomy tube will be removed after a year without any breathing crises. His success story provides hope for other children born with this disorder, an estimated 1 in 2,100 births.

“It’s not very rare,” Wheeler said. “It’s really not. I think it’s very rewarding to all of us to know that we are contributing to helping treat or even cure this disease.”

More data from Wheeler’s large animal trials will be essential to show the long-term viability of this procedure before it can be used to save the lives of other children born with this disorder. In future trials, Wheeler plans to add stem cells to the splint in order to accelerate healing.

This translational research was conducted at the IGB, a research facility at the U of I that promotes multi-disciplinary collaboration. The institute is considered by many to be the Midwest region’s center for large-animal biomedical models.

“We have a reputation for being excellent in this area,” Wheeler said. “We would like to capitalize on the expertise and the facilities that we have here to continue to conduct life-saving research. I'm hoping that this story will encourage more people come to us and say 'Hey, we'd like to develop this model.'”

Nicholas Vasi | EurekAlert!
Further information:
http://www.illinois.edu

More articles from Medical Engineering:

nachricht Medical gamma-ray camera is now palm-sized
23.05.2017 | Waseda University

nachricht Computer accurately identifies and delineates breast cancers on digital tissue slides
11.05.2017 | Case Western Reserve University

All articles from Medical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

Innovation 4.0: Shaping a humane fourth industrial revolution

17.05.2017 | Event News

 
Latest News

A CLOUD of possibilities: Finding new therapies by combining drugs

24.05.2017 | Life Sciences

Carcinogenic soot particles from GDI engines

24.05.2017 | Life Sciences

A quantum walk of photons

24.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>