Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

3D Mapping Biopsy Finds 3x Prostate Cancer of Ultrasound-Guided Biopsy

05.02.2014
Ultrasound-guided biopsies miss prostate cancers that are detected by the slightly more expensive and slightly more invasive 3D mapping biopsies.

For example, in a 2006 study of 180 men diagnosed with early stage prostate cancer via ultrasound-guided biopsy, nearly a quarter were upgraded to a more clinically significant stage of disease after 3D mapping biopsy found pockets of cancer the first technique had missed. Now, a University of Colorado Cancer Center study reports the locations of these most-missed pockets of prostate cancer.


Traditional, ultrasound-guided biopsies may miss cancer detected by the more accurate 3D mapping biopsies.

“There are three major reason we perform these 3D mapping biopsies in the clinic: first, a man may have rising PSA despite a series of negative biopsies and so want a more detailed opinion; second, a man may prefer additional reassurance that watching and waiting rather than treatment is the best course of action; and third, a man may pursue focal therapy in which only the cancerous sections of the prostate are removed and so need accurate information on the position of his cancer,” says Al Barqawi, MD, investigator at the CU Cancer Center, associate professor at the CU School of Medicine, and the paper’s senior author.

Barqawi is a pioneer of the 3D mapping biopsy technique, in which needle biopsies are taken 5mm apart across the x, y and z axes of a three-dimensional grid through the prostate, and has performed over 600 of the procedures.

The current study enrolled 161 men with a mean age of 61.6 years, who had been diagnosed with low-stage prostate cancer by ultrasound-guided biopsy. The study performed 3D mapping biopsies at a mean 192 days after the first and compared the results. Overall, ultrasound-guided biopsy found an average of 1.38 cancerous zones per patient, whereas 3D mapping biopsy found nearly three times the number of positive zones, at 3.33 per patient.

The follow-up findings from the 3D mapping study resulted in upgrading the severity of many of these seemingly low-grade cancers. Specifically, after first biopsy, 7.5 percent of patients had been graded Gleason 7 – the lowest grade at which treatment is considered “medium risk” and for which treatment is a reasonable option – and after second biopsy the percentage increased to twenty-five. After first biopsy, no patients had been scored above Gleason 7, and after 3D mapping biopsy, 4 percent were found to have Gleason 8, and 2 percent had Gleason 9.

“But we already knew that 3D mapping was likely to upgrade a prostate cancer’s Gleason score,” Barqawi says. “What we hoped to discover in this study is exactly where cancer is being missed by ultrasound-guided biopsy.”

Of these 161 total cases, cancer was found in the left-mid section of the prostate 62 times after it had been missed by ultrasound-guided biopsy. Likewise, 3D mapping found 62 unreported cancers in the right-mid section and 41 undetected cancers in the left-apex zone.

“This study adds to our knowledge about the interface and best uses of these two techniques. The cost and invasiveness of 3d mapping biopsy make it inappropriate for screening, but our message is that with the confirmation or strong suspicion of cancer, 3D mapping biopsy offers a much more accurate assessment of the location, stage and risk,” Barqawi says.

Garth Sundem | EurekAlert!
Further information:
http://www.ucdenver.edu

Further reports about: Cancer prostate prostate cancer ultrasound-guided biopsy

More articles from Medical Engineering:

nachricht Medical gamma-ray camera is now palm-sized
23.05.2017 | Waseda University

nachricht Computer accurately identifies and delineates breast cancers on digital tissue slides
11.05.2017 | Case Western Reserve University

All articles from Medical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

Physicists discover mechanism behind granular capillary effect

24.05.2017 | Physics and Astronomy

Measured for the first time: Direction of light waves changed by quantum effect

24.05.2017 | Physics and Astronomy

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>