Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

3D Mapping Biopsy Finds 3x Prostate Cancer of Ultrasound-Guided Biopsy

05.02.2014
Ultrasound-guided biopsies miss prostate cancers that are detected by the slightly more expensive and slightly more invasive 3D mapping biopsies.

For example, in a 2006 study of 180 men diagnosed with early stage prostate cancer via ultrasound-guided biopsy, nearly a quarter were upgraded to a more clinically significant stage of disease after 3D mapping biopsy found pockets of cancer the first technique had missed. Now, a University of Colorado Cancer Center study reports the locations of these most-missed pockets of prostate cancer.


Traditional, ultrasound-guided biopsies may miss cancer detected by the more accurate 3D mapping biopsies.

“There are three major reason we perform these 3D mapping biopsies in the clinic: first, a man may have rising PSA despite a series of negative biopsies and so want a more detailed opinion; second, a man may prefer additional reassurance that watching and waiting rather than treatment is the best course of action; and third, a man may pursue focal therapy in which only the cancerous sections of the prostate are removed and so need accurate information on the position of his cancer,” says Al Barqawi, MD, investigator at the CU Cancer Center, associate professor at the CU School of Medicine, and the paper’s senior author.

Barqawi is a pioneer of the 3D mapping biopsy technique, in which needle biopsies are taken 5mm apart across the x, y and z axes of a three-dimensional grid through the prostate, and has performed over 600 of the procedures.

The current study enrolled 161 men with a mean age of 61.6 years, who had been diagnosed with low-stage prostate cancer by ultrasound-guided biopsy. The study performed 3D mapping biopsies at a mean 192 days after the first and compared the results. Overall, ultrasound-guided biopsy found an average of 1.38 cancerous zones per patient, whereas 3D mapping biopsy found nearly three times the number of positive zones, at 3.33 per patient.

The follow-up findings from the 3D mapping study resulted in upgrading the severity of many of these seemingly low-grade cancers. Specifically, after first biopsy, 7.5 percent of patients had been graded Gleason 7 – the lowest grade at which treatment is considered “medium risk” and for which treatment is a reasonable option – and after second biopsy the percentage increased to twenty-five. After first biopsy, no patients had been scored above Gleason 7, and after 3D mapping biopsy, 4 percent were found to have Gleason 8, and 2 percent had Gleason 9.

“But we already knew that 3D mapping was likely to upgrade a prostate cancer’s Gleason score,” Barqawi says. “What we hoped to discover in this study is exactly where cancer is being missed by ultrasound-guided biopsy.”

Of these 161 total cases, cancer was found in the left-mid section of the prostate 62 times after it had been missed by ultrasound-guided biopsy. Likewise, 3D mapping found 62 unreported cancers in the right-mid section and 41 undetected cancers in the left-apex zone.

“This study adds to our knowledge about the interface and best uses of these two techniques. The cost and invasiveness of 3d mapping biopsy make it inappropriate for screening, but our message is that with the confirmation or strong suspicion of cancer, 3D mapping biopsy offers a much more accurate assessment of the location, stage and risk,” Barqawi says.

Garth Sundem | EurekAlert!
Further information:
http://www.ucdenver.edu

Further reports about: Cancer prostate prostate cancer ultrasound-guided biopsy

More articles from Medical Engineering:

nachricht 3-D visualization of the pancreas -- new tool in diabetes research
15.03.2017 | Umea University

nachricht New PET radiotracer identifies inflammation in life-threatening atherosclerosis
02.03.2017 | Society of Nuclear Medicine

All articles from Medical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Northern oceans pumped CO2 into the atmosphere

27.03.2017 | Earth Sciences

Fingerprint' technique spots frog populations at risk from pollution

27.03.2017 | Life Sciences

Big data approach to predict protein structure

27.03.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>