Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


New 3-tesla MRI scanner Magnetom Prisma from Siemens is designed to explore new frontiers in MRI application

How can we better understand the complexity of the brain? How can we measure and visualize body physiology?

To answer such questions in the fields of neurology, physiology or tissue metabolism, the Magnetom Prisma MRI scanner from Siemens Healthcare will offer a new level of MRI imaging capabilities.

The 3-tesla scanner combines high gradient strength and fast gradient slew rates in a way that is unprecedented for commercial whole-body systems worldwide. Based on the same technology platform as the leading 3-tesla scanner Magnetom Skyra, the Magnetom Prisma is capable of extraordinarily high spatial and temporal resolution to achieve outstanding image quality, especially in very demanding applications.

To also provide existing customers with these new possibilities, Siemens will offer to upgrade the 3-tesla scanner Magnetom Trio to the latest technology of Magnetom Prisma. The Magnetom Prisma was presented at the 98th Congress of the Radiological Society of North America (RSNA) 2012 in Chicago with a planned European availability in the second half of 2013. It is another innovation under the Agenda 2013 initiative of the Siemens Healthcare Sector.

With Magnetom Prisma, Siemens further enhances its 3-tesla portfolio and sets new standards in gradient strength. In combining 80 millitesla per meter (mT/m) and a slew rate of 200 tesla per meter per second (T/m/s) simultaneously, Magnetom Prisma offers a tandem configuration unavailable in any other commercial whole-body system today. When compared to conventional devices, the scanner’s combination of high gradient strength and fast gradient switching speed allows for increased image quality. This can open up new possibilities in areas such as diffusion imaging, because even minor diffusion effects can be captured with a high gradient strength. To make full use of this potential, the new Diffusion Spectrum Imaging (DSI) application makes it possible to resolve fine anatomical details of the brain, such as crossing white-matter fibers by using up to 514 diffusion encoding directions.

In addition to revealing new insights into brain function, Magnetom Prisma has great potential in the research fields of body physiology, organ morphometry, tissue metabolism, and quantitative MRI. Magnetom Prisma’s excellent image quality is derived from not only the gradient strength but also advanced shimming solutions that allow for finer and more effective compensation of patient-induced field disturbances.

Magnetom Prisma is based on one technological platform with the 3-tesla scanner Magnetom Skyra. It is designed as leading-edge 3-tesla scanner for clinical research for instance in the field of neurology, while Magnetom Skyra remains the top-of-the-line scanner for advanced clinical imaging. Both systems are equipped with the parallel transmit technology TimTX TrueShape, which can provide better image quality and shorter examination times. Together with syngo ZOOMit, the worldwide first parallel transmit application, it is possible to selectively excite specific regions of the body, enabling entire organs or parts of organs to be evaluated in detail. Magnetom Prisma is equipped with Tim 4G, the fourth generation of Siemens’ integrated coil technology.

With a new head-neck coil with 64 receive channels for this scanner as well as for Magnetom Spectra, users can combine up to 84 receive channels in a single scan when combining it with the standard body and spine coils – the highest number of receive channels currently available on the market. Supported by 64 or 128 receive channels of the scanner, image quality can be substantially increased while reducing scan time.

Magnetom Prisma can perform challenging research examinations at a consistently high level. Besides zero helium boil-off technology, users benefit from Dot (day optimizing throughput) technology, which makes it possible to select the right scanning strategy, depending on the indication. Dot technology guides users step-by-step through the examination and supports physicians by offering suggestions for their decisions at critical points during the examination. This increases scan consistency and reproducibility. Predefined Dot workflows facilitate the repetition of measurements for a given patient at different time points or the ability to compare examinations obtained at different sites, such as during the course of multi-site research projects.

Customers who have already installed the 3-tesla scanner Magnetom Trio will be offered onsite upgrades to the latest technology of Magnetom Prisma.

Launched in November 2011, “Agenda 2013” is the initiative of the Siemens Healthcare Sector to further strengthen its innovative power and competitiveness. Specific measures, which will be implemented by the end of 2013, have been defined in four fields of action: innovation, competitiveness, regional footprint, and people development.

The Siemens Healthcare Sector is one of the world's largest suppliers to the healthcare industry and a trendsetter in medical imaging, laboratory diagnostics, medical information technology and hearing aids. Siemens offers its customers products and solutions for the entire range of patient care from a single source – from prevention and early detection to diagnosis, and on to treatment and aftercare. By optimizing clinical workflows for the most common diseases, Siemens also makes healthcare faster, better and more cost-effective. Siemens Healthcare employs some 51,000 employees worldwide and operates around the world. In fiscal year 2012 (to September 30), the Sector posted revenue of 13.6 billion euros and profit of around 1.8 billion euros. For further information please visit:

Magnetom Prisma, TimTX TrueShape, Diffusion Spectrum Imaging (DSI), the head-neck coil, and syngo ZOOMit are currently under development. They are not for sale and their future availability cannot be guaranteed.

Reference Number: HIM201211001e

Ms. Stefanie Schiller
Healthcare Sector
Siemens AG
Henkestr. 127
91052 Erlangen
Tel: +49 (9131) 84-7803

Stefanie Schiller | Siemens Healthcare
Further information:

Further reports about: 3-Tesla DSI Healthcare MRI Magnetom Prisma Prisma ZOOMit financial sector spectrum

More articles from Medical Engineering:

nachricht Gentle sensors for diagnosing brain disorders
29.09.2016 | King Abdullah University of Science and Technology

nachricht New imaging technique in Alzheimer’s disease - opens up possibilities for new drug development
28.09.2016 | Lund University

All articles from Medical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Greater Range and Longer Lifetime

26.10.2016 | Power and Electrical Engineering

VDI presents International Bionic Award of the Schauenburg Foundation

26.10.2016 | Awards Funding

3-D-printed magnets

26.10.2016 | Power and Electrical Engineering

More VideoLinks >>>