Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

3-D doppler ultrasound helps identify breast cancer

22.10.2008
Three-dimensional (3-D) power Doppler ultrasound helps radiologists distinguish between malignant and benign breast masses, according to a new study being published in the November issue of Radiology.

"Using 3-D scans promises greater accuracy due to more consistent sampling over the entire tumor," said lead author, Gerald L. LeCarpentier, Ph.D., assistant professor in the Department of Radiology at University of Michigan in Ann Arbor. "Our study shows that 3-D power Doppler ultrasound may be useful in the evaluation of some breast masses."

Malignant breast masses often exhibit increased blood flow compared to normal tissue or benign masses. Using 3-D power Doppler ultrasound, radiologists are able to detect vessels with higher flow speeds, which likely indicate cancer.

For the study, Dr. LeCarpentier and colleagues studied 78 women between the ages of 26 and 70 who where scheduled for biopsy of a suspicious breast mass. Each of the women underwent a 3-D Doppler ultrasound exam followed by core or excisional biopsy of the breast.

The results showed that 3-D power Doppler ultrasound was highly accurate in identifying malignant breast tumors. When combined with age-based assessment and gray scale visual analysis, 3-D Doppler showed a sensitivity of 100 percent in identifying cancerous tumors and a specificity of 86 percent in excluding benign tumors.

"Using speed-weighted 3-D power Doppler ultrasound, higher flow velocities in the malignant tumor-feeding vessels may be detected, whereas vessels with slower flow velocities in surrounding benign masses may be excluded," Dr. LeCarpentier said.

Linda Brooks | EurekAlert!
Further information:
http://www.rsna.org

Further reports about: 3-D 3-D doppler ultrasound Doppler breast cancer radiology

More articles from Medical Engineering:

nachricht Novel PET imaging agent could help guide therapy for brain diseases
03.04.2018 | Society of Nuclear Medicine and Molecular Imaging

nachricht New Computer Architecture: Time Lapse for Dementia Research
29.03.2018 | Deutsches Zentrum für Neurodegenerative Erkrankungen e.V. (DZNE)

All articles from Medical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

Im Focus: Basel researchers succeed in cultivating cartilage from stem cells

Stable joint cartilage can be produced from adult stem cells originating from bone marrow. This is made possible by inducing specific molecular processes occurring during embryonic cartilage formation, as researchers from the University and University Hospital of Basel report in the scientific journal PNAS.

Certain mesenchymal stem/stromal cells from the bone marrow of adults are considered extremely promising for skeletal tissue regeneration. These adult stem...

Im Focus: Like a wedge in a hinge

Researchers lay groundwork to tailor drugs for new targets in cancer therapy

In the fight against cancer, scientists are developing new drugs to hit tumor cells at so far unused weak points. Such a “sore spot” is the protein complex...

Im Focus: The Future of Ultrafast Solid-State Physics

In an article that appears in the journal “Review of Modern Physics”, researchers at the Laboratory for Attosecond Physics (LAP) assess the current state of the field of ultrafast physics and consider its implications for future technologies.

Physicists can now control light in both time and space with hitherto unimagined precision. This is particularly true for the ability to generate ultrashort...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

Diamond-like carbon is formed differently to what was believed -- machine learning enables development of new model

19.04.2018 | Materials Sciences

Electromagnetic wizardry: Wireless power transfer enhanced by backward signal

19.04.2018 | Physics and Astronomy

Ultrafast electron oscillation and dephasing monitored by attosecond light source

19.04.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>