Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

3-D doppler ultrasound helps identify breast cancer

22.10.2008
Three-dimensional (3-D) power Doppler ultrasound helps radiologists distinguish between malignant and benign breast masses, according to a new study being published in the November issue of Radiology.

"Using 3-D scans promises greater accuracy due to more consistent sampling over the entire tumor," said lead author, Gerald L. LeCarpentier, Ph.D., assistant professor in the Department of Radiology at University of Michigan in Ann Arbor. "Our study shows that 3-D power Doppler ultrasound may be useful in the evaluation of some breast masses."

Malignant breast masses often exhibit increased blood flow compared to normal tissue or benign masses. Using 3-D power Doppler ultrasound, radiologists are able to detect vessels with higher flow speeds, which likely indicate cancer.

For the study, Dr. LeCarpentier and colleagues studied 78 women between the ages of 26 and 70 who where scheduled for biopsy of a suspicious breast mass. Each of the women underwent a 3-D Doppler ultrasound exam followed by core or excisional biopsy of the breast.

The results showed that 3-D power Doppler ultrasound was highly accurate in identifying malignant breast tumors. When combined with age-based assessment and gray scale visual analysis, 3-D Doppler showed a sensitivity of 100 percent in identifying cancerous tumors and a specificity of 86 percent in excluding benign tumors.

"Using speed-weighted 3-D power Doppler ultrasound, higher flow velocities in the malignant tumor-feeding vessels may be detected, whereas vessels with slower flow velocities in surrounding benign masses may be excluded," Dr. LeCarpentier said.

Linda Brooks | EurekAlert!
Further information:
http://www.rsna.org

Further reports about: 3-D 3-D doppler ultrasound Doppler breast cancer radiology

More articles from Medical Engineering:

nachricht Novel breast tomosynthesis technique reduces screening recall rate
21.02.2017 | Radiological Society of North America

nachricht Biocompatible 3-D tracking system has potential to improve robot-assisted surgery
17.02.2017 | Children's National Health System

All articles from Medical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

From rocks in Colorado, evidence of a 'chaotic solar system'

23.02.2017 | Physics and Astronomy

'Quartz' crystals at the Earth's core power its magnetic field

23.02.2017 | Earth Sciences

Antimicrobial substances identified in Komodo dragon blood

23.02.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>