Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

3-D in angiography: New imaging software from Siemens simplifies workflow for minimally invasive heart valve implantation

24.08.2010
At the congress of the European Society of Cardiology (ESC) 2010 in Stockholm, Sweden, Siemens will present a new image processing software that helps cardiologists and cardiac surgeons prepare and perform transcatheter aortic valve implantations (TAVI): Syngo Aortic ValveGuide automatically reconstructs a 3D representation of the aortic root from CT-like cross-sectional images acquired with the angiography system.

The software selects anatomical landmarks as the coronary ostia, for instance, and overlays the 3D image with two-dimensional images acquired during live fluoroscopy. That way, the physician obtains real-time, three-dimensional guidance in the patient’s body while navigating the new valve to its intended location.

During the minimally invasive TAVI (transcatheter aortic valve implantation) intervention, an artificial aortic valve is inserted via the femoral artery or through the apex of the heart. A new image processing software from provides the physician automated 3D guidance for the procedure: Syngo Aortic ValveGuide segments the aortic root in three-dimensional mode from Syngo DynaCT Cardiac images. With the aid of anatomical landmarks in the 3D representation of the vessel, Syngo Aortic ValveGuide calculates the exact perpendicular view on the aortic root. The C-arm adjusts to the corresponding angulations for live fluoroscopy.

That way, it provides the proper perspective that the physician requires to exactly position the new valve. Consequently, as soon as the software overlays the 3D image of the aorta with the two-dimensional live fluoroscopy, the cardiologist in the cath lab or, respectively, the heart surgeon in the hybrid room, can start the intervention. Since Syngo Aortic ValveGuide only requires a short fluoroscopy time prior to the procedure, the patient's exposure to radiation and contrast agent can be reduced considerably.

The Heart Center in Leipzig, one of the leading facilities in Germany to perform TAVI-procedures, had previously performed several of these interventions with the Syngo DynaCT Cardiac from Siemens. This software processes CT-like images of the heart from images acquired with the angiography system. However, to overlay live fluoroscopy images with these 3D images and find the correct angulation for the C-arm, the physician had to leave the sterile operating area and perform manual angulation calculations at a workstation – or make medical staff available solely for this purpose. "With Syngo Aortic ValveGuide, we can now find the optimal angulation with a perpendicular view on the aortic root easier and faster than before, because the software automates so many work steps,” says Dr. Jörg Kempfert, heart surgeon at the Heart Center Leipzig.

The Siemens Healthcare Sector is one of the world's largest suppliers to the healthcare industry and a trendsetter in medical imaging, laboratory diagnostics, medical information technology and hearing aids. Siemens offers its customers products and solutions for the entire range of patient care from a single source – from prevention and early detection to diagnosis, and on to treatment and aftercare. By optimizing clinical workflows for the most common diseases, Siemens also makes healthcare faster, better and more cost-effective. Siemens Healthcare employs some 48,000 employees worldwide and operates around the world. In fiscal year 2009 (to September 30), the Sector posted revenue of 11.9 billion euros and profit of around 1.5 billion euros.

The product mentioned herein is not commercially available. Due to regulatory reasons its future availability cannot be guaranteed.

The outcomes achieved by the Siemens customers described herein were achieved in the customer's unique setting. Since there is no "typical" hospital and many variables exist (e.g., hospital size, case mix, level of IT adoption) there can be no guarantee that others will achieve the same results. The Heart Center of the University Leipzig has a cooperation contract with Siemens Healthcare.

Marion Bludszuweit | Siemens Healthcare
Further information:
http://www.siemens.com/healthcare

More articles from Medical Engineering:

nachricht Novel PET tracer identifies most bacterial infections
06.10.2017 | Society of Nuclear Medicine and Molecular Imaging

nachricht Teleoperating robots with virtual reality
05.10.2017 | Massachusetts Institute of Technology, CSAIL

All articles from Medical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Osaka university researchers make the slipperiest surfaces adhesive

18.10.2017 | Materials Sciences

Space radiation won't stop NASA's human exploration

18.10.2017 | Physics and Astronomy

Los Alamos researchers and supercomputers help interpret the latest LIGO findings

18.10.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>