Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


2 million euros in funding for new MR-compatible electrophysiological brain implants


Professor Klaus Scheffler plans to develop and test new electronic systems in active implants - Innovative funding from the Federal Ministry of Education and Research (BMBF)

Professor Klaus Scheffler, physicist at the University of Tübingen, Germany, received funding for innovative science from the Federal Ministry of Education and Research (BMBF) to make neuro-implants suitable for everyday use, in particular to improve compatibility with medical diagnostic procedures such as MRI.

CorTec Brain Interchange, an implantable technology, can measure and stimulate brain activity for long-term use.

CorTec Brain Interchange/CorTec GmbH

Scheffler works at the Max Planck Institute for Biological Cybernetics and the Werner Reichardt Center for Integrative Neurosciences at the University. The funded project is a joint venture between the University of Ulm, MPI for Biological Cybernetics, eesy-ic GmbH and the coordinator CorTec GmbH. The Federal Ministry of Education and Research (BMBF) is funding the project within the framework of new electronic systems for intelligent medical technology, called smart health, for 3 years with a total of 2 million euros, in which the MPI receives more or less 382.300 €.

MRI is one of the most important non-invasive diagnostic procedures," remarks Scheffler, "and in the course of a lifetime every person will statistically receive at least one MRI". In addition, neuro-implants are often used in elderly patients (e. g. Parkinson's disease), which naturally have an increased co-morbidity that requires MRI examinations.

“Hence”, Scheffler argues, "electronic innovations are urgently needed to defuse this problem. Previously developed systems do not or only to a very limited extent meet the requirements of MRI compatibility. Co-functional implants, such as systems that are active during an MRI examination and are able to transmit or record signals from inside the body do not exist so far ".

Electronic systems in active implants provide therapy options for a variety of common diseases – in particular cardiovascular diseases (pacemakers, defibrillators), disorders of the nervous system (epilepsy, Parkinson's disease), chronic pain (neuromodulators, such as deep brain stimulators) and sensory disabilities (cochlear implant, retina implant) as well as systemic diseases like inflammation and hypertension (peripheral nerve stimulators).

“The economic and health-political importance of these innovative technologies is enormous and will continue to grow", Scheffler stipulates, and continues: "Innovations in the underlying technologies, especially electronics, are necessary in order to be able to meet the increasing requirements for wider dissemination“.

The aim of the funding is to use CorTec's Brain-Interchange® implant systems as a prototype, and with the aid of a bundle of electronic innovations, such as MRI-compatible chipsets, development of wireless communication with high data rates and broad application potential, dedicated microchip developments for neuromodulators and novel technologies, as well as the development of a new generation of microchips and energy management. The funding also provides for the necessary feasibility studies, to develop an active implant system that is 1) conditional MRI safe, 2) MRI compatible , and 3) is co-functional with MRI.

The feasibility of such a MRI compatible and co-functional implanted device would pave the way to a range of novel applications. MRI-compatible medical devices with versatile applications range from the therapy of chronic paralysis, improved treatment of Parkinson's disease, pain, epilepsy or psychiatric diseases to the unique possibility of simultaneously measuring electrophysiological and MRI data.
Furthermore, the innovations developed in the project will not only be applicable to other active implant technologies, but will also be used as key technologies in many other fields of application within and outside the medical technology industry. According to the definition of the WBAN standard, the developed radio interface could be used within the medical technology sector for wireless health monitoring systems and in the MRI environment, but could also be used in completely different areas such as consumer -and personal entertainment devices or in industrial environments.

Weitere Informationen:

Beate Fülle | Max-Planck-Institut für biologische Kybernetik

More articles from Medical Engineering:

nachricht Münster researchers make a fly’s heartbeat visible / Software automatically recognizes pulse
12.03.2018 | Westfälische Wilhelms-Universität Münster

nachricht 3-D-written model to provide better understanding of cancer spread
05.03.2018 | Purdue University

All articles from Medical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Locomotion control with photopigments

Researchers from Göttingen University discover additional function of opsins

Animal photoreceptors capture light with photopigments. Researchers from the University of Göttingen have now discovered that these photopigments fulfill an...

Im Focus: Surveying the Arctic: Tracking down carbon particles

Researchers embark on aerial campaign over Northeast Greenland

On 15 March, the AWI research aeroplane Polar 5 will depart for Greenland. Concentrating on the furthest northeast region of the island, an international team...

Im Focus: Unique Insights into the Antarctic Ice Shelf System

Data collected on ocean-ice interactions in the little-researched regions of the far south

The world’s second-largest ice shelf was the destination for a Polarstern expedition that ended in Punta Arenas, Chile on 14th March 2018. Oceanographers from...

Im Focus: ILA 2018: Laser alternative to hexavalent chromium coating

At the 2018 ILA Berlin Air Show from April 25–29, the Fraunhofer Institute for Laser Technology ILT is showcasing extreme high-speed Laser Material Deposition (EHLA): A video documents how for metal components that are highly loaded, EHLA has already proved itself as an alternative to hard chrome plating, which is now allowed only under special conditions.

When the EU restricted the use of hexavalent chromium compounds to special applications requiring authorization, the move prompted a rethink in the surface...

Im Focus: Radar for navigation support from autonomous flying drones

At the ILA Berlin, hall 4, booth 202, Fraunhofer FHR will present two radar sensors for navigation support of drones. The sensors are valuable components in the implementation of autonomous flying drones: they function as obstacle detectors to prevent collisions. Radar sensors also operate reliably in restricted visibility, e.g. in foggy or dusty conditions. Due to their ability to measure distances with high precision, the radar sensors can also be used as altimeters when other sources of information such as barometers or GPS are not available or cannot operate optimally.

Drones play an increasingly important role in the area of logistics and services. Well-known logistic companies place great hope in these compact, aerial...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

International Tinnitus Conference of the Tinnitus Research Initiative in Regensburg

13.03.2018 | Event News

International Virtual Reality Conference “IEEE VR 2018” comes to Reutlingen, Germany

08.03.2018 | Event News

Latest News

Wandering greenhouse gas

16.03.2018 | Earth Sciences

'Frequency combs' ID chemicals within the mid-infrared spectral region

16.03.2018 | Physics and Astronomy

Biologists unravel another mystery of what makes DNA go 'loopy'

16.03.2018 | Life Sciences

Science & Research
Overview of more VideoLinks >>>