Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


World’s longest bus premieres in Dresden

On August 22nd, 2012, the new AutoTram® Extra Grand was presented to the public for the first time in the historic city center of Dresden.
The premiere of »the world’s longest bus« attracted many visitors and press. Earlier in the afternoon, politicians and researchers visited the vehicle, including the German Minister of Education and Research Prof. Anette Schavan, the Saxon Prime Minister Stanislaw Tillich and Prof. Reimund Neugebauer, director of the Fraunhofer Institute for Machine Tools and Forming Technology IWU.

The multi-unit vehicle with rubber tires is more than 30 meters long and has a capacity of 256 passengers. It has been developed and constructed within the »Innovative Regionale Wachstumskerne« research program, which was initiated by the German Federal Ministry of Education and Research (BMBF).

The AutoTram® technology is based on a vehicle concept developed by the Fraunhofer IVI, combining the advantages of rail and road-bound transport systems. So far, the concept had only been used for research purposes, but is now applied in practice. The innovative public transport vehicle has been developed in joint research with the Institute of Electrical Power Engineering, TU Dresden, and Wittur Electric Drive GmbH, who were in charge of developing the high efficient drive engines, as well as the Dresden-based M&P motion, control and power electronics GmbH, who contributed power electronics, the vehicle computer and supercapacitors. The Dresdner Verkehrsbetriebe (DVB) AG were responsible for consulting in transportation and traffic sciences. The type approval was carried out by the DEKRA and the AutoTram® Extra Grand was constructed by bus manufacturer Göppel Bus GmbH in Thüringen.

Due to its high transport capacity, the AutoTram® Extra Grand bridges the gap between conventional city buses and trams, offering new possibilities for an environmental friendly public transport. The vehicle is perfectly suitable for the use in BRT (Bus Rapid Transit) systems. These can be found in many cities in Asia and South America, where rail-bound solutions are often not realistic due to high costs, space or time restrictions.

Another significant technical feature, apart from the vehicle’s dimensions, is the train-like guidance of the vehicle. The AutoTram® Extra Grand has four guided axles, three of which can be controlled by means of a secure electrohydraulic actuator system. With the multi-axle steering system, the vehicle can be maneuvered like a 12-meter bus both forward and reverse. Fraunhofer IVI developed the control algorithms and the battery storage system, enabling all-electric operation for a distance of 8 kilometers. With the compact range extender, batteries can be recharged on route. By means of a predictive energy management, energy-efficient operation is guaranteed.

The AutoTram® Extra Grand is not only the world’s longest bus today, but it also represents a future-oriented public transport system in large city areas.

AutoTram Extra Grand


Fraunhofer Institute for Transportation
and Infrastructure Systems IVI
Dr. Matthias Klingner
Phone +49 (0)351/ 46 40-640

Elke Sähn
Public Relations and Press

Phone +49 (0)351/ 46 40-612

Elke Sähn | Fraunhofer-Institut
Further information:

More articles from Transportation and Logistics:

nachricht Study sets new distance record for medical drone transport
13.09.2017 | Johns Hopkins Medicine

nachricht Researchers 'count cars' -- literally -- to find a better way to control heavy traffic
10.08.2017 | Florida Atlantic University

All articles from Transportation and Logistics >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Space observation with radar to secure Germany's space infrastructure

Satellites in near-Earth orbit are at risk due to the steady increase in space debris. But their mission in the areas of telecommunications, navigation or weather forecasts is essential for society. Fraunhofer FHR therefore develops radar-based systems which allow the detection, tracking and cataloging of even the smallest particles of debris. Satellite operators who have access to our data are in a better position to plan evasive maneuvers and prevent destructive collisions. From April, 25-29 2018, Fraunhofer FHR and its partners will exhibit the complementary radar systems TIRA and GESTRA as well as the latest radar techniques for space observation across three stands at the ILA Berlin.

The "traffic situation" in space is very tense: the Earth is currently being orbited not only by countless satellites but also by a large volume of space...

Im Focus: Researchers Discover New Anti-Cancer Protein

An international team of researchers has discovered a new anti-cancer protein. The protein, called LHPP, prevents the uncontrolled proliferation of cancer cells in the liver. The researchers led by Prof. Michael N. Hall from the Biozentrum, University of Basel, report in “Nature” that LHPP can also serve as a biomarker for the diagnosis and prognosis of liver cancer.

The incidence of liver cancer, also known as hepatocellular carcinoma, is steadily increasing. In the last twenty years, the number of cases has almost doubled...

Im Focus: Researchers at Fraunhofer monitor re-entry of Chinese space station Tiangong-1

In just a few weeks from now, the Chinese space station Tiangong-1 will re-enter the Earth's atmosphere where it will to a large extent burn up. It is possible that some debris will reach the Earth's surface. Tiangong-1 is orbiting the Earth uncontrolled at a speed of approx. 29,000 km/h.Currently the prognosis relating to the time of impact currently lies within a window of several days. The scientists at Fraunhofer FHR have already been monitoring Tiangong-1 for a number of weeks with their TIRA system, one of the most powerful space observation radars in the world, with a view to supporting the German Space Situational Awareness Center and the ESA with their re-entry forecasts.

Following the loss of radio contact with Tiangong-1 in 2016 and due to the low orbital height, it is now inevitable that the Chinese space station will...

Im Focus: Alliance „OLED Licht Forum“ – Key partner for OLED lighting solutions

Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP, provider of research and development services for OLED lighting solutions, announces the founding of the “OLED Licht Forum” and presents latest OLED design and lighting solutions during light+building, from March 18th – 23rd, 2018 in Frankfurt a.M./Germany, at booth no. F91 in Hall 4.0.

They are united in their passion for OLED (organic light emitting diodes) lighting with all of its unique facets and application possibilities. Thus experts in...

Im Focus: Mars' oceans formed early, possibly aided by massive volcanic eruptions

Oceans formed before Tharsis and evolved together, shaping climate history of Mars

A new scenario seeking to explain how Mars' putative oceans came and went over the last 4 billion years implies that the oceans formed several hundred million...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

New solar solutions for sustainable buildings and cities

23.03.2018 | Event News

Virtual reality conference comes to Reutlingen

19.03.2018 | Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

Latest News

For graphite pellets, just add elbow grease

23.03.2018 | Materials Sciences

Unique communication strategy discovered in stem cell pathway controlling plant growth

23.03.2018 | Agricultural and Forestry Science

Sharpening the X-ray view of the nanocosm

23.03.2018 | Physics and Astronomy

Science & Research
Overview of more VideoLinks >>>