Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

World’s longest bus premieres in Dresden

24.08.2012
On August 22nd, 2012, the new AutoTram® Extra Grand was presented to the public for the first time in the historic city center of Dresden.
The premiere of »the world’s longest bus« attracted many visitors and press. Earlier in the afternoon, politicians and researchers visited the vehicle, including the German Minister of Education and Research Prof. Anette Schavan, the Saxon Prime Minister Stanislaw Tillich and Prof. Reimund Neugebauer, director of the Fraunhofer Institute for Machine Tools and Forming Technology IWU.

The multi-unit vehicle with rubber tires is more than 30 meters long and has a capacity of 256 passengers. It has been developed and constructed within the »Innovative Regionale Wachstumskerne« research program, which was initiated by the German Federal Ministry of Education and Research (BMBF).

The AutoTram® technology is based on a vehicle concept developed by the Fraunhofer IVI, combining the advantages of rail and road-bound transport systems. So far, the concept had only been used for research purposes, but is now applied in practice. The innovative public transport vehicle has been developed in joint research with the Institute of Electrical Power Engineering, TU Dresden, and Wittur Electric Drive GmbH, who were in charge of developing the high efficient drive engines, as well as the Dresden-based M&P motion, control and power electronics GmbH, who contributed power electronics, the vehicle computer and supercapacitors. The Dresdner Verkehrsbetriebe (DVB) AG were responsible for consulting in transportation and traffic sciences. The type approval was carried out by the DEKRA and the AutoTram® Extra Grand was constructed by bus manufacturer Göppel Bus GmbH in Thüringen.

Due to its high transport capacity, the AutoTram® Extra Grand bridges the gap between conventional city buses and trams, offering new possibilities for an environmental friendly public transport. The vehicle is perfectly suitable for the use in BRT (Bus Rapid Transit) systems. These can be found in many cities in Asia and South America, where rail-bound solutions are often not realistic due to high costs, space or time restrictions.

Another significant technical feature, apart from the vehicle’s dimensions, is the train-like guidance of the vehicle. The AutoTram® Extra Grand has four guided axles, three of which can be controlled by means of a secure electrohydraulic actuator system. With the multi-axle steering system, the vehicle can be maneuvered like a 12-meter bus both forward and reverse. Fraunhofer IVI developed the control algorithms and the battery storage system, enabling all-electric operation for a distance of 8 kilometers. With the compact range extender, batteries can be recharged on route. By means of a predictive energy management, energy-efficient operation is guaranteed.

The AutoTram® Extra Grand is not only the world’s longest bus today, but it also represents a future-oriented public transport system in large city areas.

AutoTram Extra Grand

Contact

Fraunhofer Institute for Transportation
and Infrastructure Systems IVI
Dr. Matthias Klingner
Director
Phone +49 (0)351/ 46 40-640
matthias.klingner@ivi.fraunhofer.de

Elke Sähn
Public Relations and Press

Phone +49 (0)351/ 46 40-612
presse@ivi.fraunhofer.de

Elke Sähn | Fraunhofer-Institut
Further information:
http://www.ivi.fraunhofer.de/en
http://www.autotram.info/en.html

More articles from Transportation and Logistics:

nachricht Variable speed limits could reduce crashes, ease congestion in highway work zones
07.06.2017 | University of Missouri-Columbia

nachricht Experiments show that a few self-driving cars can dramatically improve traffic flow
10.05.2017 | University of Illinois College of Engineering

All articles from Transportation and Logistics >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Quantum thermometer or optical refrigerator?

23.06.2017 | Physics and Astronomy

A 100-year-old physics problem has been solved at EPFL

23.06.2017 | Physics and Astronomy

Equipping form with function

23.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>