Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

World’s longest bus premieres in Dresden

24.08.2012
On August 22nd, 2012, the new AutoTram® Extra Grand was presented to the public for the first time in the historic city center of Dresden.
The premiere of »the world’s longest bus« attracted many visitors and press. Earlier in the afternoon, politicians and researchers visited the vehicle, including the German Minister of Education and Research Prof. Anette Schavan, the Saxon Prime Minister Stanislaw Tillich and Prof. Reimund Neugebauer, director of the Fraunhofer Institute for Machine Tools and Forming Technology IWU.

The multi-unit vehicle with rubber tires is more than 30 meters long and has a capacity of 256 passengers. It has been developed and constructed within the »Innovative Regionale Wachstumskerne« research program, which was initiated by the German Federal Ministry of Education and Research (BMBF).

The AutoTram® technology is based on a vehicle concept developed by the Fraunhofer IVI, combining the advantages of rail and road-bound transport systems. So far, the concept had only been used for research purposes, but is now applied in practice. The innovative public transport vehicle has been developed in joint research with the Institute of Electrical Power Engineering, TU Dresden, and Wittur Electric Drive GmbH, who were in charge of developing the high efficient drive engines, as well as the Dresden-based M&P motion, control and power electronics GmbH, who contributed power electronics, the vehicle computer and supercapacitors. The Dresdner Verkehrsbetriebe (DVB) AG were responsible for consulting in transportation and traffic sciences. The type approval was carried out by the DEKRA and the AutoTram® Extra Grand was constructed by bus manufacturer Göppel Bus GmbH in Thüringen.

Due to its high transport capacity, the AutoTram® Extra Grand bridges the gap between conventional city buses and trams, offering new possibilities for an environmental friendly public transport. The vehicle is perfectly suitable for the use in BRT (Bus Rapid Transit) systems. These can be found in many cities in Asia and South America, where rail-bound solutions are often not realistic due to high costs, space or time restrictions.

Another significant technical feature, apart from the vehicle’s dimensions, is the train-like guidance of the vehicle. The AutoTram® Extra Grand has four guided axles, three of which can be controlled by means of a secure electrohydraulic actuator system. With the multi-axle steering system, the vehicle can be maneuvered like a 12-meter bus both forward and reverse. Fraunhofer IVI developed the control algorithms and the battery storage system, enabling all-electric operation for a distance of 8 kilometers. With the compact range extender, batteries can be recharged on route. By means of a predictive energy management, energy-efficient operation is guaranteed.

The AutoTram® Extra Grand is not only the world’s longest bus today, but it also represents a future-oriented public transport system in large city areas.

AutoTram Extra Grand

Contact

Fraunhofer Institute for Transportation
and Infrastructure Systems IVI
Dr. Matthias Klingner
Director
Phone +49 (0)351/ 46 40-640
matthias.klingner@ivi.fraunhofer.de

Elke Sähn
Public Relations and Press

Phone +49 (0)351/ 46 40-612
presse@ivi.fraunhofer.de

Elke Sähn | Fraunhofer-Institut
Further information:
http://www.ivi.fraunhofer.de/en
http://www.autotram.info/en.html

More articles from Transportation and Logistics:

nachricht Laser rescue system for serious accidents
29.11.2016 | Laser Zentrum Hannover e.V.

nachricht Bremen University students reach the final at robotics competition with parcel delivery robot
19.10.2016 | BIBA - Bremer Institut für Produktion und Logistik

All articles from Transportation and Logistics >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

NTU scientists build new ultrasound device using 3-D printing technology

07.12.2016 | Health and Medicine

The balancing act: An enzyme that links endocytosis to membrane recycling

07.12.2016 | Life Sciences

How to turn white fat brown

07.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>