Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Vehicle-Roadway Communication Being Tested in Virginia

06.11.2012
Someday, your auto and the roadway will be in constant communication and able to suggest route changes to avoid accidents, construction, and congestion; coordinate your vehicle with signal lights, other vehicles, and lane markers; and let you know where you can park. Right now, a fleet of instrumented vehicles are testing these systems on two instrumented test beds – one in Northern Virginia and one in Southwestern Virginia.

The test beds are being operated by the Connected Vehicle/Infrastructure University Transportation Center, a Tier 1 University Transportation Center operated by a consortium made up of the Virginia Tech Transportation Institute, the University of Virginia's Center for Transportation Studies, and Morgan State University.

Robust vehicle-to-vehicle, vehicle-to-infrastructure, and vehicle-to-device communication will enable applications addressing the U.S. Department of Transportation’s strategic goals of safety, state of good repair, economic competiveness, livable communities, and environmental sustainability.

In Northern Virginia, as you speed along Interstate 66 in Fairfax County, or move more sedately along Routes 29 and 50, you may notice large metal boxes with eggbeater-like antennae along the sides of the roads.

"The Northern Virginia test bed is a tremendous asset with respect to testing and deployment of research findings," said Center Director Tom Dingus, director of the Virginia Tech Transportation Institute. "Key elements of this test bed are strong partnerships with local agencies, including law enforcement and transit providers, particularly the Fairfax County Transit Authority."

"The Fairfax County test bed experiences the very real and significant transportation challenges in terms of congestion, safety, and environmental impact that are of concern nationwide,” said University of Virginia Consortium Leader Brian Smith, a professor and the chair of the department of civil and environmental engineering. "Through this test bed, our research team will have the opportunity to develop, test, and demonstrate tangible connected vehicles applications that will have a positive impact on the travelers’ experience."

Southwest Virginia test bed resources include Route 460 in Montgomery County for real-world testing as in Northern Virginia, and Virginia's Smart Road, a closed-circuit transportation research facility in Blacksburg where experimental procedures can be tested.

"The test beds provide a variety of roadway types, topography, and driver types that allow us to exercise connected-vehicle systems across a range of environments under controlled conditions, so that a high number of equipped vehicle interactions will occur," said Morgan State Consortium Leader Andrew Farkas, a professor and the director of the National Transportation Center.

The 55 roadside units report road hazards, optimize de-icing operations, warn of congestion and emergency vehicles, and monitor pavement condition. The instrumented vehicles, which include 10 cars, a semi-truck, and a bus, have forward-collision, road-departure, blind-spot, lane-change, and curve-speed warning system and advance geographic information systems. They also have sophisticated recording devices that download to the University Transportation Center so that researchers can observe in real-time and accumulate data for later transportation.

Test bed development and vehicle instrumentation will be finalized by the end of the year.

Research under way includes safety and human factors of adaptable stop/yield signs; connected vehicle applications for adaptive lighting; intersection management using in-vehicle speed advisory/adaptation; eco-speed control; "intelligent" awareness system for roadway workers; emergency vehicle-to-vehicle communication; connected vehicle enabled freeway merge management; infrastructure safety assessment; infrastructure pavement assessment; and connected vehicle-infrastructure application development for addressing safety and congestion issues related to public transportation, pedestrians, and bicyclists. Future research projects include optimized routing, road hazard reporting, optimized de-icing, beacon for at-risk pedestrians, and vehicle-to-vehicle communication to enhance rear signaling.

The consortium universities will conduct education and outreach programs to safely and efficiently implement successful connected vehicle and infrastructure technologies.

Gabrielle Laskey | Newswise Science News
Further information:
http://www.vtti.vt.edu

More articles from Transportation and Logistics:

nachricht Electric hybrid bus line in Stockholm uses Siemens charging system
17.03.2015 | Siemens AG

nachricht LOGWERT adds to Heilbronn's status as a research hub
10.03.2015 | Fraunhofer-Institut für Arbeitswirtschaft und Organisation IAO

All articles from Transportation and Logistics >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fast and Accurate 3-D Imaging Technique to Track Optically-Trapped Particles

KAIST researchers published an article on the development of a novel technique to precisely track the 3-D positions of optically-trapped particles having complicated geometry in high speed in the April 2015 issue of Optica.

Daejeon, Republic of Korea, April 23, 2015--Optical tweezers have been used as an invaluable tool for exerting micro-scale force on microscopic particles and...

Im Focus: NOAA, Tulane identify second possible specimen of 'pocket shark' ever found

Pocket sharks are among the world's rarest finds

A very small and rare species of shark is swimming its way through scientific literature. But don't worry, the chances of this inches-long vertebrate biting...

Im Focus: Drexel materials scientists putting a new spin on computing memory

Ever since computers have been small enough to be fixtures on desks and laps, their central processing has functioned something like an atomic Etch A Sketch, with electromagnetic fields pushing data bits into place to encode data.

Unfortunately, the same drawbacks and perils of the mechanical sketch board have been just as pervasive in computing: making a change often requires starting...

Im Focus: Exploding stars help to understand thunderclouds on Earth

How is lightning initiated in thunderclouds? This is difficult to answer - how do you measure electric fields inside large, dangerously charged clouds? It was discovered, more or less by coincidence, that cosmic rays provide suitable probes to measure electric fields within thunderclouds. This surprising finding is published in Physical Review Letters on April 24th. The measurements were performed with the LOFAR radio telescope located in the Netherlands.

How is lightning initiated in thunderclouds? This is difficult to answer - how do you measure electric fields inside large, dangerously charged clouds? It was...

Im Focus: On the trail of a trace gas

Max Planck researcher Buhalqem Mamtimin determines how much nitrogen oxide is released into the atmosphere from agriculturally used oases.

In order to make statements about current and future air pollution, scientists use models which simulate the Earth’s atmosphere. A lot of information such as...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

HHL Energy Conference on May 11/12, 2015: Students Discuss about Decentralized Energy

23.04.2015 | Event News

“Developing our cities, preserving our planet”: Nobel Laureates gather for the first time in Asia

23.04.2015 | Event News

HHL's Entrepreneurship Conference on FinTech

13.04.2015 | Event News

 
Latest News

Electrons Move Like Light in Three-Dimensional Solid

24.04.2015 | Materials Sciences

Connecting Three Atomic Layers Puts Semiconducting Science on Its Edge

24.04.2015 | Materials Sciences

Understanding the Body’s Response to Worms and Allergies

24.04.2015 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>