Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Vehicle-Roadway Communication Being Tested in Virginia

06.11.2012
Someday, your auto and the roadway will be in constant communication and able to suggest route changes to avoid accidents, construction, and congestion; coordinate your vehicle with signal lights, other vehicles, and lane markers; and let you know where you can park. Right now, a fleet of instrumented vehicles are testing these systems on two instrumented test beds – one in Northern Virginia and one in Southwestern Virginia.

The test beds are being operated by the Connected Vehicle/Infrastructure University Transportation Center, a Tier 1 University Transportation Center operated by a consortium made up of the Virginia Tech Transportation Institute, the University of Virginia's Center for Transportation Studies, and Morgan State University.

Robust vehicle-to-vehicle, vehicle-to-infrastructure, and vehicle-to-device communication will enable applications addressing the U.S. Department of Transportation’s strategic goals of safety, state of good repair, economic competiveness, livable communities, and environmental sustainability.

In Northern Virginia, as you speed along Interstate 66 in Fairfax County, or move more sedately along Routes 29 and 50, you may notice large metal boxes with eggbeater-like antennae along the sides of the roads.

"The Northern Virginia test bed is a tremendous asset with respect to testing and deployment of research findings," said Center Director Tom Dingus, director of the Virginia Tech Transportation Institute. "Key elements of this test bed are strong partnerships with local agencies, including law enforcement and transit providers, particularly the Fairfax County Transit Authority."

"The Fairfax County test bed experiences the very real and significant transportation challenges in terms of congestion, safety, and environmental impact that are of concern nationwide,” said University of Virginia Consortium Leader Brian Smith, a professor and the chair of the department of civil and environmental engineering. "Through this test bed, our research team will have the opportunity to develop, test, and demonstrate tangible connected vehicles applications that will have a positive impact on the travelers’ experience."

Southwest Virginia test bed resources include Route 460 in Montgomery County for real-world testing as in Northern Virginia, and Virginia's Smart Road, a closed-circuit transportation research facility in Blacksburg where experimental procedures can be tested.

"The test beds provide a variety of roadway types, topography, and driver types that allow us to exercise connected-vehicle systems across a range of environments under controlled conditions, so that a high number of equipped vehicle interactions will occur," said Morgan State Consortium Leader Andrew Farkas, a professor and the director of the National Transportation Center.

The 55 roadside units report road hazards, optimize de-icing operations, warn of congestion and emergency vehicles, and monitor pavement condition. The instrumented vehicles, which include 10 cars, a semi-truck, and a bus, have forward-collision, road-departure, blind-spot, lane-change, and curve-speed warning system and advance geographic information systems. They also have sophisticated recording devices that download to the University Transportation Center so that researchers can observe in real-time and accumulate data for later transportation.

Test bed development and vehicle instrumentation will be finalized by the end of the year.

Research under way includes safety and human factors of adaptable stop/yield signs; connected vehicle applications for adaptive lighting; intersection management using in-vehicle speed advisory/adaptation; eco-speed control; "intelligent" awareness system for roadway workers; emergency vehicle-to-vehicle communication; connected vehicle enabled freeway merge management; infrastructure safety assessment; infrastructure pavement assessment; and connected vehicle-infrastructure application development for addressing safety and congestion issues related to public transportation, pedestrians, and bicyclists. Future research projects include optimized routing, road hazard reporting, optimized de-icing, beacon for at-risk pedestrians, and vehicle-to-vehicle communication to enhance rear signaling.

The consortium universities will conduct education and outreach programs to safely and efficiently implement successful connected vehicle and infrastructure technologies.

Gabrielle Laskey | Newswise Science News
Further information:
http://www.vtti.vt.edu

More articles from Transportation and Logistics:

nachricht Laser rescue system for serious accidents
29.11.2016 | Laser Zentrum Hannover e.V.

nachricht Bremen University students reach the final at robotics competition with parcel delivery robot
19.10.2016 | BIBA - Bremer Institut für Produktion und Logistik

All articles from Transportation and Logistics >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Simple processing technique could cut cost of organic PV and wearable electronics

06.12.2016 | Materials Sciences

3-D printed kidney phantoms aid nuclear medicine dosing calibration

06.12.2016 | Medical Engineering

Robot on demand: Mobile machining of aircraft components with high precision

06.12.2016 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>