Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Vehicle-Roadway Communication Being Tested in Virginia

Someday, your auto and the roadway will be in constant communication and able to suggest route changes to avoid accidents, construction, and congestion; coordinate your vehicle with signal lights, other vehicles, and lane markers; and let you know where you can park. Right now, a fleet of instrumented vehicles are testing these systems on two instrumented test beds – one in Northern Virginia and one in Southwestern Virginia.

The test beds are being operated by the Connected Vehicle/Infrastructure University Transportation Center, a Tier 1 University Transportation Center operated by a consortium made up of the Virginia Tech Transportation Institute, the University of Virginia's Center for Transportation Studies, and Morgan State University.

Robust vehicle-to-vehicle, vehicle-to-infrastructure, and vehicle-to-device communication will enable applications addressing the U.S. Department of Transportation’s strategic goals of safety, state of good repair, economic competiveness, livable communities, and environmental sustainability.

In Northern Virginia, as you speed along Interstate 66 in Fairfax County, or move more sedately along Routes 29 and 50, you may notice large metal boxes with eggbeater-like antennae along the sides of the roads.

"The Northern Virginia test bed is a tremendous asset with respect to testing and deployment of research findings," said Center Director Tom Dingus, director of the Virginia Tech Transportation Institute. "Key elements of this test bed are strong partnerships with local agencies, including law enforcement and transit providers, particularly the Fairfax County Transit Authority."

"The Fairfax County test bed experiences the very real and significant transportation challenges in terms of congestion, safety, and environmental impact that are of concern nationwide,” said University of Virginia Consortium Leader Brian Smith, a professor and the chair of the department of civil and environmental engineering. "Through this test bed, our research team will have the opportunity to develop, test, and demonstrate tangible connected vehicles applications that will have a positive impact on the travelers’ experience."

Southwest Virginia test bed resources include Route 460 in Montgomery County for real-world testing as in Northern Virginia, and Virginia's Smart Road, a closed-circuit transportation research facility in Blacksburg where experimental procedures can be tested.

"The test beds provide a variety of roadway types, topography, and driver types that allow us to exercise connected-vehicle systems across a range of environments under controlled conditions, so that a high number of equipped vehicle interactions will occur," said Morgan State Consortium Leader Andrew Farkas, a professor and the director of the National Transportation Center.

The 55 roadside units report road hazards, optimize de-icing operations, warn of congestion and emergency vehicles, and monitor pavement condition. The instrumented vehicles, which include 10 cars, a semi-truck, and a bus, have forward-collision, road-departure, blind-spot, lane-change, and curve-speed warning system and advance geographic information systems. They also have sophisticated recording devices that download to the University Transportation Center so that researchers can observe in real-time and accumulate data for later transportation.

Test bed development and vehicle instrumentation will be finalized by the end of the year.

Research under way includes safety and human factors of adaptable stop/yield signs; connected vehicle applications for adaptive lighting; intersection management using in-vehicle speed advisory/adaptation; eco-speed control; "intelligent" awareness system for roadway workers; emergency vehicle-to-vehicle communication; connected vehicle enabled freeway merge management; infrastructure safety assessment; infrastructure pavement assessment; and connected vehicle-infrastructure application development for addressing safety and congestion issues related to public transportation, pedestrians, and bicyclists. Future research projects include optimized routing, road hazard reporting, optimized de-icing, beacon for at-risk pedestrians, and vehicle-to-vehicle communication to enhance rear signaling.

The consortium universities will conduct education and outreach programs to safely and efficiently implement successful connected vehicle and infrastructure technologies.

Gabrielle Laskey | Newswise Science News
Further information:

All articles from Transportation and Logistics >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New Sinumerik features improve productivity and precision

EMO 2015, Hall 3, Booth E06/F03

  • Drive optimization called automatically by the part program boosts productivity
  • Automatically switching the dynamic values to rapid traverse and interpolation...

Im Focus: LZH presents additive manufacturing at the LABVOLUTION

The Laser Zentrum Hannover e.V. (LZH) will present how laser-based technologies can contribute to the laboratory of the future at the LABVOLUTION in Hannover in Hall 9, Stand E67/09, from October 6th to 8th, 2015. As a part of the model lab smartLAB, the LZH is showing how additive manufacturing, better known as 3-D printing, can make experimental setups more flexible.

Twelve partners from science and industry are presenting an intelligent and innovative model lab at the special display smartLAB. A part of this intelligent...

Im Focus: New polymer creates safer fuels

Before embarking on a transcontinental journey, jet airplanes fill up with tens of thousands of gallons of fuel. In the event of a crash, such large quantities of fuel increase the severity of an explosion upon impact.

Researchers at Caltech and JPL have discovered a polymeric fuel additive that can reduce the intensity of postimpact explosions that occur during accidents and...

Im Focus: 3-D printing techniques help surgeons carve new ears

When surgical residents need to practice a complicated procedure to fashion a new ear for children without one, they typically get a bar of soap, carrot or an apple.

To treat children with a missing or under-developed ear, experienced surgeons harvest pieces of rib cartilage from the child and carve them into the framework...

Im Focus: Walk the line

NASA studies physical performance after spaceflight

Walking an obstacle course on Earth is relatively easy. Walking an obstacle course on Earth after being in space for six months is not quite as simple. The...

All Focus news of the innovation-report >>>



Event News

EHFG 2015: Securing healthcare and sustainably strengthening healthcare systems

01.10.2015 | Event News

Conference in Brussels: Tracking and Tracing the Smallest Marine Life Forms

30.09.2015 | Event News

World Alzheimer`s Day – Professor Willnow: Clearer Insights into the Development of the Disease

17.09.2015 | Event News

Latest News

Infrared thermography can detect joint inflammation and help improving work ergonomics

02.10.2015 | Medical Engineering

Semiconductor nanoparticles show high luminescence in a polymer matrix

02.10.2015 | Materials Sciences

New Sinumerik features improve productivity and precision

02.10.2015 | Trade Fair News

More VideoLinks >>>