Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Vehicle-Roadway Communication Being Tested in Virginia

06.11.2012
Someday, your auto and the roadway will be in constant communication and able to suggest route changes to avoid accidents, construction, and congestion; coordinate your vehicle with signal lights, other vehicles, and lane markers; and let you know where you can park. Right now, a fleet of instrumented vehicles are testing these systems on two instrumented test beds – one in Northern Virginia and one in Southwestern Virginia.

The test beds are being operated by the Connected Vehicle/Infrastructure University Transportation Center, a Tier 1 University Transportation Center operated by a consortium made up of the Virginia Tech Transportation Institute, the University of Virginia's Center for Transportation Studies, and Morgan State University.

Robust vehicle-to-vehicle, vehicle-to-infrastructure, and vehicle-to-device communication will enable applications addressing the U.S. Department of Transportation’s strategic goals of safety, state of good repair, economic competiveness, livable communities, and environmental sustainability.

In Northern Virginia, as you speed along Interstate 66 in Fairfax County, or move more sedately along Routes 29 and 50, you may notice large metal boxes with eggbeater-like antennae along the sides of the roads.

"The Northern Virginia test bed is a tremendous asset with respect to testing and deployment of research findings," said Center Director Tom Dingus, director of the Virginia Tech Transportation Institute. "Key elements of this test bed are strong partnerships with local agencies, including law enforcement and transit providers, particularly the Fairfax County Transit Authority."

"The Fairfax County test bed experiences the very real and significant transportation challenges in terms of congestion, safety, and environmental impact that are of concern nationwide,” said University of Virginia Consortium Leader Brian Smith, a professor and the chair of the department of civil and environmental engineering. "Through this test bed, our research team will have the opportunity to develop, test, and demonstrate tangible connected vehicles applications that will have a positive impact on the travelers’ experience."

Southwest Virginia test bed resources include Route 460 in Montgomery County for real-world testing as in Northern Virginia, and Virginia's Smart Road, a closed-circuit transportation research facility in Blacksburg where experimental procedures can be tested.

"The test beds provide a variety of roadway types, topography, and driver types that allow us to exercise connected-vehicle systems across a range of environments under controlled conditions, so that a high number of equipped vehicle interactions will occur," said Morgan State Consortium Leader Andrew Farkas, a professor and the director of the National Transportation Center.

The 55 roadside units report road hazards, optimize de-icing operations, warn of congestion and emergency vehicles, and monitor pavement condition. The instrumented vehicles, which include 10 cars, a semi-truck, and a bus, have forward-collision, road-departure, blind-spot, lane-change, and curve-speed warning system and advance geographic information systems. They also have sophisticated recording devices that download to the University Transportation Center so that researchers can observe in real-time and accumulate data for later transportation.

Test bed development and vehicle instrumentation will be finalized by the end of the year.

Research under way includes safety and human factors of adaptable stop/yield signs; connected vehicle applications for adaptive lighting; intersection management using in-vehicle speed advisory/adaptation; eco-speed control; "intelligent" awareness system for roadway workers; emergency vehicle-to-vehicle communication; connected vehicle enabled freeway merge management; infrastructure safety assessment; infrastructure pavement assessment; and connected vehicle-infrastructure application development for addressing safety and congestion issues related to public transportation, pedestrians, and bicyclists. Future research projects include optimized routing, road hazard reporting, optimized de-icing, beacon for at-risk pedestrians, and vehicle-to-vehicle communication to enhance rear signaling.

The consortium universities will conduct education and outreach programs to safely and efficiently implement successful connected vehicle and infrastructure technologies.

Gabrielle Laskey | Newswise Science News
Further information:
http://www.vtti.vt.edu

More articles from Transportation and Logistics:

nachricht Tool helps cities to plan electric bus routes, and calculate the benefits
09.01.2017 | International Institute for Applied Systems Analysis (IIASA)

nachricht Realistic training for extreme flight conditions
28.12.2016 | Technical University of Munich (TUM)

All articles from Transportation and Logistics >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

New Study Will Help Find the Best Locations for Thermal Power Stations in Iceland

19.01.2017 | Earth Sciences

Not of Divided Mind

19.01.2017 | Life Sciences

Molecule flash mob

19.01.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>