Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Vectron – Siemens’ universal locomotive for rail transportation in Europe

29.06.2010
InnoTrans 2010 – Pre-Fair Report

Siemens presents Vectron, a new locomotive generation that has been developed for the widest possible range of traction tasks. These locomotives can be used for both national and cross-border passenger and freight traffic and are built for a maximum speed of either 160 km/h or 200 km/h.

The various performance classes and voltage systems – with either alternating current (AC), direct current (DC) or multi-system type – enable the locomotive to be configured easily to individual requirements. Country-specific automatic control systems can simply be exchanged or added. Another special feature is the front end that is designed as an internal deformation zone. This can be readily disconnected from the rest of body, thus ensuring easy replacement in the event of an accident. The components in the machine compartment are arranged to make the best possible use of space. The completely modular concept is also suitable for operators who require only small numbers of vehicles.

Rail transportation in Europe is changing at an ever faster rate. The logistics are becoming more and more complex; goods have to be moved more quickly and over greater distances. The cross-border traffic in Central Europe and on the Southeast Corridor is already heavy and will continue to increase. Modern locomotives have to be capable of serving these main routes and future growth regions, which means they have to be interoperable and pre-equipped to operate there. They have to be built to ensure easy conversion to country-specific systems and equipped with intelligent train protection concepts. In addition, greater environmental awareness and new logistics concepts are elevating the importance of national transports by rail.

Siemens offers a number of Vectron versions for a range of transportation tasks. The Vectron not only covers the high performance class up to 6400 kW but also provides solutions in the medium performance class up to 5200 kW for regional passenger traffic and lighter freight trains. A diesel-electric version is planned for the medium term. The locomotive body is designed to withstand stresses with a maximum static tensile force of 1,500 kN and a maximum static compressive force of 2,000 kN.

The service-proven, semi-suspended hollow shaft motor drive has been developed further for the required speed range. The lower unsprung masses reduce track wear. The standard Vectron is designed for a maximum speed of 160 km/h, but it can be upgraded to a 200 km/h high-speed version with an appropriate preliminary equipment package and without having to change the bogies. The bogies can be originally equipped or retrofitted with active rotational dampers (ADD). The ADD fulfills the function of a conventional rotational damper while also being an actuator. This reduces the guiding forces in curves and increases wheel service life because tread and wheel flange wear is lower.

The machine compartment layout, with a central aisle, makes optimum use of space and also makes maintenance exceptionally easy. Racks with the same functions have the same specified locations in all versions. It has been possible to shorten the traction converter even further. The space subsequently gained from this has been used to install the AC main current components alongside the DC components in the machine compartment instead of on top of the roof. This substantially reduces the cost of repairs and the length of downtimes in the event of damage to the overhead contact line.

The Vectron's train protection concept is exceptionally versatile. The locomotive is preconfigured for operation in almost all European countries. There are three fixed rack positions in the machine compartment for the train protection cabinets. The cabinets themselves have a modular design for easy conversion and retrofitting. The underfloor area and the bogie have also been prepared for the mounting of antennas and speed encoders. The concept of predefined installation locations has also proven itself for the driver's desk because subsequent retrofitting does not require any makeshift structures.

The Vectron has major advantages when it comes to safety. Firstly, it has a defined deformation zone in the front end, which can be disconnected from the body. Secondly, the straight, central aisle provides a quick escape route.

The new Railcover service concept was developed in conjunction with the Vectron. It offers freely combinable modules for the spare part supply, maintenance and servicing, which can be selected to match the customer's specific requirements. Various grades of support can be provided to ensure the highest possible availability, ranging from mobile on-site support to full service for the complete vehicle fleet.

The Siemens Industry Sector (Erlangen, Germany) is the world's leading supplier of production, transportation, building and lighting technologies. With integrated automation technologies as well as comprehensive industry-specific solutions, Siemens increases the productivity, efficiency and flexibility of its customers in the fields of industry and infrastructure. The Sector consists of six Divisions: Building Technologies, Drive Technologies, Industry Automation, Industry Solutions, Mobility and Osram. With around 207,000 employees worldwide Siemens Industry posted sales of about EUR35 billion in fiscal year 2009.

The Siemens Mobility Division (Erlangen) is the internationally leading provider of transportation and logistics solutions. With “Complete mobility”, the Division is focused on networking the various modes of transportation in order to ensure the efficient and environmentally compatible transport of people and goods. “Complete mobility” targets the goal of sustainability and combines the company’s competence in operations control systems for railways and traffic control systems for roadways together with solutions for airport and postal logistics, railway electrification, rolling stock for mass transit, regional and mainline services, as well as turnkey systems and forward-looking service concepts. With around 25,000 employees worldwide Siemens Mobility posted sales of EUR6.4 billion in fiscal year 2009 (ended September 30).

Siemens AG
Corporate Communications and Government Affairs
Wittelsbacherplatz 2, 80333 Munich
Germany
Reference number: I MO 201006.031 e fp
Media Relations: Franz-Ferdinand Friese
Phone: +49 9131 7-46032
Email: franz.friese@siemens.com
Siemens AG
Industry Sector – Mobility Division
Werner-von-Siemens-Str. 67, 91052 Erlangen / Germany

Franz-Ferdinand Friese | Siemens Mobility Division
Further information:
http://www.siemens.com/mobility/press/pressreleases
http://www.siemens.com/industry
http://www.siemens.com/mobility

More articles from Transportation and Logistics:

nachricht Variable speed limits could reduce crashes, ease congestion in highway work zones
07.06.2017 | University of Missouri-Columbia

nachricht Experiments show that a few self-driving cars can dramatically improve traffic flow
10.05.2017 | University of Illinois College of Engineering

All articles from Transportation and Logistics >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Quantum thermometer or optical refrigerator?

23.06.2017 | Physics and Astronomy

A 100-year-old physics problem has been solved at EPFL

23.06.2017 | Physics and Astronomy

Equipping form with function

23.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>