Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

UC Discoveries Could Help Quiet The World’s Cities

15.08.2012
They’re sleek. They’re fast. They’re powerful. And, they are deafening.

Furthermore, those Top Gun military jets need to be up in the air in the wee hours – over land – to simulate their landings on aircraft carriers. But innovations out of the University of Cincinnati’s Gas Dynamics and Propulsion Laboratory are showing promise in reducing the intense noise of these supersonic jets without impacting their power. It’s research that can help neighborhoods slumber a little more soundly, keep their windows rattling a little less loudly and also protect the hearing of military personnel.

Research by Jeff Kastner, a research professor in the UC College of Engineering and Applied Science (CEAS), will be presented Aug. 21 at INTER-NOISE 2012, the 41st International Congress and Exposition on Noise Control Engineering, in New York City. Kastner will present on UC discoveries that use chevrons and fluidic injection to reduce supersonic jet noise.

Kastner’s research, supported by funding from the Office of Naval Research, is examining chevron technology developed at UC that has, in part, been commonly used in the commercial aviation industry to reduce noise on jet engines.

Chevrons – serrations on the exhaust side of a jet engine – are becoming more popular in commercial aircraft. They control the turbulence and resulting noise coming from the high-speed flow as it exhausts from the jet engine.

Kastner says the velocities of exotic military planes are much higher than commercial aircraft, which is the main reason they’re so much louder. Since chevrons can result in some fuel loss when controlling turbulence, Kastner’s research is testing fluidic technology to enhance the performance of chevrons for high-power military jets. He explains that since the planes only need the noise reduction during takeoff, his lab is exploring a chevron/fluidic injection system that can be turned on during takeoff and turned off when the plane is in the air, eliminating fuel loss.

“We are in the business of trying to quiet planes without impacting their fuel efficiency,” says Kastner.

Kastner says he and fellow researchers in UC’s Gas Dynamics and Propulsion Laboratory are testing multiple concepts that manipulate the turbulence in the jet exhaust to examine how those changes impact the sound field. That’s because noise is a byproduct of the turbulence, and so manipulating the turbulence can make it less efficient at producing noise.

The short-term goal of the UC research is to reduce noise by 3 decibels while ultimately reducing noise 10 decibels or more.

UC’s Gas Dynamics and Propulsion Laboratory is housed in the UC College of Engineering and Applied Science (CEAS), home of nearly 200 years of engineering innovation.

Dawn Fuller | Newswise Science News
Further information:
http://www.uc.edu

More articles from Transportation and Logistics:

nachricht Researchers 'count cars' -- literally -- to find a better way to control heavy traffic
10.08.2017 | Florida Atlantic University

nachricht From parking garage to smart multi-purpose garage
19.07.2017 | Fraunhofer-Institut für Arbeitswirtschaft und Organisation IAO

All articles from Transportation and Logistics >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

A Map of the Cell’s Power Station

18.08.2017 | Life Sciences

Engineering team images tiny quasicrystals as they form

18.08.2017 | Physics and Astronomy

Researchers printed graphene-like materials with inkjet

18.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>