Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Tool helps cities to plan electric bus routes, and calculate the benefits

09.01.2017

Researchers designed a new tool for cities to optimize electric bus systems, which has now been used in Sweden’s first wireless charging bus system, launched in December.

The rollout of Sweden’s first wireless charging buses earlier this month was coupled with something the rest of the world could use – namely, a tool for cities to determine the environmental and financial benefits of introducing their own electrified bus networks.


Map of bus lines in Stockholm showing where electrical lines with wireless charging would be possible. Red lines are biodiesel, Blue electrical/conductive charging, Orange electrical/inductive

KTH Sweden

The bus system analysis model was presented during ceremonies marking the debut of wireless charging buses in Stockholm – the first in all of Scandinavia. Using the model to propose the optimal locations for installing chargers on Stockholm’s bus network, energy technology researcher Maria Xylia at KTH Royal Institute of Technology reported that the fleet could halve CO2 emissions while lowering energy consumption by 34 percent, if the city installed 150 chargers to electrify 94 bus routes.

The 40% savings in fuel costs would balance out the projected costs of investments in infrastructure such as chargers and connection to the grid, says Xylia, who developed the model in cooperation with the International Institute for Applied System Analysis (IIASA). Xylia, a researcher at the Energy and Climate Studies Unit and Integrated Transport Research Lab at KTH, developed the model as part of her stay at the Young Scientists Summer Program of 2016 at IIASA with a grant sponsored by the Swedish Research Council, Formas.

While that forecast is based on optimized energy usage, the model also offers users the option of cost optimization. In Stockholm’s case, a cost-optimized scenario would mean fewer electrified bus lines, but lower energy consumption nevertheless – albeit with a slightly-less-extensive estimate of 40% reduction in emissions.

Xylia says that the model allows for multiple bus charging technologies and even takes into account potentially rising electricity costs in the estimates. “But as long as electricity prices remain in this range, the infrastructure cost would balance the fuel savings.”
However, in order to gain the maximum environmental benefits of electrification, the electricity needs to come from renewable sources, she says. “If you look at the energy mix throughout the EU, you will see a difference – it’s a totally different story from Sweden. You have to have green energy in order to maximize environmental benefit.”

The model can be applied to any city as a basis for decision-making, Xylia says.
“As long as you have a detailed map of the bus network and a reliable bus schedule, then you can do this for any city,” she says. “London is much bigger than Stockholm, but if they have this data, then we can generate optimized energy and cost scenarios for that system.”

A complete dissemination of the model will be published at a later date.

The project is connected with IIASA’s work on energy system optimization methodologies that can be used on the local, regional and national scale, says one of Xylia’s supervisors on the project, Florian Kraxner, deputy director of IIASA’s Ecosystems Services and Management Program.

One such model is IIASA’s BeWhere, which is the basis for the bus electrification analysis tool. Kraxner says that adapting the BeWhere model to transport is a step toward making cities energy efficient and reducing their carbon footprint.

“Cities and urban areas will soon become the major demand driver for energy demand globally,” says IIASA researcher Sylvain Leduc, who served as Xylia’s co-supervisor. “Many cities are still using a combination of different kinds of busses and tramways. These combined road and rail urban grids can be assessed an optimized in an integrated way.”

KTH is part of the project “Wireless Bus Stop Charging”, which is funded by the Swedish Energy Agency. The project’s aim is to implement, test and evaluate the potential of wireless charging for buses in city traffic to reduce emissions, improve energy efficiency and decrease fossil-fuel dependence through electrification. The project partners include Scania, Stockholm’s Public Transport Authority SL, energy utility company Vattenfall, and the municipality of Södertälje.

Weitere Informationen:

http://www.iiasa.ac.at/web/home/about/news/170109-bus-kth.html

Katherine Leitzell, MSc |
Further information:
http://www.iiasa.ac.at

More articles from Transportation and Logistics:

nachricht Study sets new distance record for medical drone transport
13.09.2017 | Johns Hopkins Medicine

nachricht Researchers 'count cars' -- literally -- to find a better way to control heavy traffic
10.08.2017 | Florida Atlantic University

All articles from Transportation and Logistics >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Virtual Reality for Bacteria

An interdisciplinary group of researchers interfaced individual bacteria with a computer to build a hybrid bio-digital circuit - Study published in Nature Communications

Scientists at the Institute of Science and Technology Austria (IST Austria) have managed to control the behavior of individual bacteria by connecting them to a...

Im Focus: A space-time sensor for light-matter interactions

Physicists in the Laboratory for Attosecond Physics (run jointly by LMU Munich and the Max Planck Institute for Quantum Optics) have developed an attosecond electron microscope that allows them to visualize the dispersion of light in time and space, and observe the motions of electrons in atoms.

The most basic of all physical interactions in nature is that between light and matter. This interaction takes place in attosecond times (i.e. billionths of a...

Im Focus: A transistor of graphene nanoribbons

Transistors based on carbon nanostructures: what sounds like a futuristic dream could be reality in just a few years' time. An international research team working with Empa has now succeeded in producing nanotransistors from graphene ribbons that are only a few atoms wide, as reported in the current issue of the trade journal "Nature Communications."

Graphene ribbons that are only a few atoms wide, so-called graphene nanoribbons, have special electrical properties that make them promising candidates for the...

Im Focus: Quantum internet goes hybrid

In a recent study, published in Nature, ICFO researchers Nicolas Maring, Pau Farrera, Dr. Kutlu Kutluer, Dr. Margherita Mazzera, and Dr. Georg Heinze led by ICREA Prof. Hugues de Riedmatten, have achieved an elementary "hybrid" quantum network link and demonstrated for the first time photonic quantum communication between two very distinct quantum nodes placed in different laboratories, using a single photon as information carrier.

Today, quantum information networks are ramping up to become a disruptive technology that will provide radically new capabilities for information processing...

Im Focus: New proton record: Researchers measure magnetic moment with greatest possible precision

High-precision measurement of the g-factor eleven times more precise than before / Results indicate a strong similarity between protons and antiprotons

The magnetic moment of an individual proton is inconceivably small, but can still be quantified. The basis for undertaking this measurement was laid over ten...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Blockchain is becoming more important in the energy market

05.12.2017 | Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

 
Latest News

Blockchain – Use Cases einer disruptiven Technologie

05.12.2017 | Information Technology

Research reveals how cells rebuild after mitosis

05.12.2017 | Life Sciences

Nature's toughest substances decoded

05.12.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>