Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Time to Change an Led Light? S&T Researchers Design System to Tell

25.09.2012
In many of the nation’s traffic lights, light-emitting diodes or LEDs with their brighter light and longer life have replaced standard bulbs.

But knowing when to replace the signal heads has remained a guessing game, says Dr. Suzanna Long, assistant professor of engineering management and systems engineering at Missouri University of Science and Technology. That’s because LED traffic lights don’t burn out – they just lose brightness over time.

So Long and other researchers at Missouri S&T, in partnership with the Missouri Department of Transportation, have developed an instrument to measure LED intensity. The laser-guided device allows measurements to be taken from the roadside at night, instead of requiring technicians to physically check traffic lights by using a bucket truck.

Long’s team created the measurement tool while working to provide MoDOT with a data-driven replacement schedule for LEDs, which have been widely adopted for use in sustainable traffic signal management.

“The majority of agencies replace LED signals on a spot basis when they receive a complaint,” she says. “The maintenance costs associated with sending a crew out to replace a single LED are very high. Our methodology provides a more cost-effective mechanism for determining replacement and allows agencies to meet goals of being good stewards of public money.”

Long says in addition to addressing individual complaints about brightness, transportation officials have used a generic replacement schedule based on the manufacturers’ warranties, usually six years. But since life expectancy of LEDs varies by intersection and the basic science of LED components, that’s not the most cost-effective schedule.

Results of this study, named one of the 2012 “Sweet 16” High Value Research Projects by the American Association of State Highway and Transportation Officials, appears in the Engineering Management Journal’s special issue on transportation management this month.

The team plans to extend the previous data and collect data from the same LED traffic indicators in the coming years to improve the reliability and accuracy of their results. Working with Long on the project at Missouri S&T are Dr. Mariesa Crow, the Fred W. Finley Distinguished Professor of Electrical Engineering; Dr. Abhijit Gosavi and Dr. Ruwen Qin, assistant professors engineering management and systems engineering; and Dr. C.H. Wu, professor of electrical and computer engineering.

Contact: Missouri S&T Public Relations, 573-341-4328, news@mst.edu

Mindy Limback | Newswise Science News
Further information:
http://www.mst.edu

More articles from Transportation and Logistics:

nachricht Tool helps cities to plan electric bus routes, and calculate the benefits
09.01.2017 | International Institute for Applied Systems Analysis (IIASA)

nachricht Realistic training for extreme flight conditions
28.12.2016 | Technical University of Munich (TUM)

All articles from Transportation and Logistics >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Safe glide at total engine failure with ELA-inside

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded after a glide flight with an Airbus A320 in ditching on the Hudson River. All 155 people on board were saved.

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded...

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

New pop-up strategy inspired by cuts, not folds

27.02.2017 | Materials Sciences

Sandia uses confined nanoparticles to improve hydrogen storage materials performance

27.02.2017 | Interdisciplinary Research

Decoding the genome's cryptic language

27.02.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>