Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Study sets new distance record for medical drone transport

13.09.2017

Medical samples transported 160+ miles by unmanned aircraft in Arizona desert

Johns Hopkins researchers have set a new delivery distance record for medical drones, successfully transporting human blood samples across 161 miles of Arizona desert. Throughout the three-hour flight, they report, the on-board payload system maintained temperature control, ensuring the samples were viable for laboratory analysis after landing.


Temperature-controlled specimen transport container designed by Johns Hopkins researchers is packed with blood sample test tubes.

Credit: Johns Hopkins Medicine

In a report of the findings, published in the American Journal of Clinical Pathology on Sept. 6, the investigators say the achievement adds to evidence that unmanned aircraft can be an effective, safe and timely way to quickly transport medical samples from remote sites to laboratories.

"We expect that in many cases, drone transport will be the quickest, safest and most efficient option to deliver some biological samples to a laboratory from rural or urban settings," says Timothy Amukele, M.D., Ph.D., assistant professor of pathology at the Johns Hopkins University School of Medicine and the paper's senior author.

"Drones can operate where there are no roads, and overcome conditions that disable wheeled vehicles, traffic and other logistical inefficiencies that are the enemy of improved, timely patient diagnoses and care," Amukele says. "Drones are likely to be the 21st century's best medical sample delivery system." Building on previous work by Amukele's team, the investigators collected pairs of 84 blood samples at the University of Arizona in Tucson, then drove them 76 miles to an airfield.

One sample from each pair was loaded onto a commercially available drone, which flew them 161 miles. The flight took off and landed at the same airfield, on a drone test range. The samples flown by drone were contained in a temperature-controlled chamber designed by the Johns Hopkins team. The other sample of each pair was held in a car at the airfield with active cooling to maintain target temperature. The average temperature of the flown samples was 24.8°C (76.6°F) compared with 27.3°C (81.1°F) for the samples not flown.

Among other precautions, the test was conducted away from populated areas in restricted airspace at an unpopulated military test range that was cleared of other air traffic. The aircraft was under the control of a certified remote pilot, using a radio link between the drone's onboard flight computer and the ground control station. Samples were packed and transported according to International Air Transport Association guidelines. The aircraft used in the study was a Latitude Engineering HQ-40.

Following the flight, all samples were transported 62 miles by car to the Mayo Clinic in Scottsdale, Arizona. All samples were tested for 17 of the 19 most common chemistry and hematology tests. Flown and not-flown paired samples showed similar results for red blood cell, white blood cell and platelet counts and sodium levels, among other results. Statistically significant but small differences were seen in glucose and potassium levels, which also show variation in standard transport methods (e.g. automobile transport). These differences were due to chemical degradation from slightly warmer temperature in the not-flown samples.

The Johns Hopkins team previously studied the impact of drone transportation on the chemical, hematological and microbial makeup of drone-flown blood samples over distances up to 20 miles, and found that none were negatively affected. The team plans further and larger studies in the U.S. and overseas.

"Getting diagnostic results far more quickly under difficult conditions will almost certainly improve care and save more lives," Amukele says.

###

Other authors on this study include Jeff Street of the Johns Hopkins University School of Medicine; Christine LH Snozek and James Hernandez of the Mayo Clinic in Arizona; and Ryan G. Wyatt, Matthew Douglas and Richard Amini of the University of Arizona.

Funding for this study was provided by Peter Kovler of the Blum-Kovler Foundation.

Media Contact

Chanapa Tantibanchachai
chanapa@jhmi.edu
410-502-9433

 @HopkinsMedicine

http://www.hopkinsmedicine.org 

Chanapa Tantibanchachai | EurekAlert!

More articles from Transportation and Logistics:

nachricht Researchers 'count cars' -- literally -- to find a better way to control heavy traffic
10.08.2017 | Florida Atlantic University

nachricht From parking garage to smart multi-purpose garage
19.07.2017 | Fraunhofer-Institut für Arbeitswirtschaft und Organisation IAO

All articles from Transportation and Logistics >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

Im Focus: Hybrid optics bring color imaging using ultrathin metalenses into focus

For photographers and scientists, lenses are lifesavers. They reflect and refract light, making possible the imaging systems that drive discovery through the microscope and preserve history through cameras.

But today's glass-based lenses are bulky and resist miniaturization. Next-generation technologies, such as ultrathin cameras or tiny microscopes, require...

Im Focus: Stem cell divisions in the adult brain seen for the first time

Scientists from the University of Zurich have succeeded for the first time in tracking individual stem cells and their neuronal progeny over months within the intact adult brain. This study sheds light on how new neurons are produced throughout life.

The generation of new nerve cells was once thought to taper off at the end of embryonic development. However, recent research has shown that the adult brain...

Im Focus: Interference as a new method for cooling quantum devices

Theoretical physicists propose to use negative interference to control heat flow in quantum devices. Study published in Physical Review Letters

Quantum computer parts are sensitive and need to be cooled to very low temperatures. Their tiny size makes them particularly susceptible to a temperature...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Researchers invent tiny, light-powered wires to modulate brain's electrical signals

21.02.2018 | Life Sciences

The “Holy Grail” of peptide chemistry: Making peptide active agents available orally

21.02.2018 | Life Sciences

Atomic structure of ultrasound material not what anyone expected

21.02.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>