Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Siemens-equipped driverless underground metro line in Singapore starts operations

11.02.2014
The public transport operator SBS Transit Limited has started passenger service on the driverless Downtown Line 1 (DTL1) in Singapore.

The commissioning of the Line, which has a total length of 42 kilometers and comprises 34 stations, will occur in three phases. Initially, service has commenced for DTL1; a section of four kilometers, with six stations and six trains in revenue operation Siemens supplies the signaling system as well as the traction power supply for all three sections of the Line. The double-track metro line is designed to transport up to 500,000 passengers per day when the Line is completed in 2017.

The current metro network in Singapore is about 180 kilometers long and is used by some 2.5 million commuters every day. The Downtown Line connects the residential areas in the northwest and east to Singapore's city center. The first section of the line that has now opened in the city center runs from the financial district to the Chinatown shopping district.

The second section, which comprises around 16 kilometers of track and twelve stations, will link the northwestern districts of Singapore to the central business district in 2016. The 21 kilometer connection of the eastern part is scheduled for completion in 2017.

Siemens supplied the automatic train control system Trainguard Sirius CBTC that uses Communication Based Train Control technology to permit driverless operation and Trackguard Westrace MK2 electronic interlockings of latest generation. The operations control system Controlguide Rail 9000 (ATS – Automatic Train Supervision) is used for automatic train monitoring. Siemens also installed the trackside and onboard equipment for fully automated train operation in unattended mode.

For the electrification of the entire line, Siemens equipped the traction power supply system for 750 VDC. Power is supplied from the 66 kV AC utility network and stepped down to 22kV AC to feed a medium-voltage ring that supplies to the traction substations, the stations and the depot with 22 kV AC using Siemens 8DA10 Switchgears. The traction substations are converts the 22 kV AC into 750 VDC using Sitras REC and distributes the electrical energy to the third rail through Sitras DSG Switchgear. The electrical energy recovered during the braking of the trains is fed back into the medium-voltage power system via Sitras TCI Inverters and thus made available to all other electrical loads.

To keep pace with Singapore's growing transport needs, the government announced in 2008 that it would be investing about 28 billion US dollars in expanding the railway network to a total track length of 360 kilometers as part of the "Master Plan 2030" program.

Editor
Silke Reh
+49 89 636 630368
silke.reh@siemens.com

Silke Reh | Siemens Mobility and Logistics
Further information:
http://www.siemens.com/press/mobility-logistics/material

Further reports about: Downtown Singapore Sitras HES Switchgear TrAiN VDC control system electrical energy power supply

More articles from Transportation and Logistics:

nachricht Tool helps cities to plan electric bus routes, and calculate the benefits
09.01.2017 | International Institute for Applied Systems Analysis (IIASA)

nachricht Realistic training for extreme flight conditions
28.12.2016 | Technical University of Munich (TUM)

All articles from Transportation and Logistics >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Transport of molecular motors into cilia

28.03.2017 | Life Sciences

A novel hybrid UAV that may change the way people operate drones

28.03.2017 | Information Technology

NASA spacecraft investigate clues in radiation belts

28.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>