Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists develop an 'intelligent car' able to learn from his owner’s driving and warn him in case of accident hazard

24.09.2009
The DRIVSCO system, which has had the participation of six European countries, detects “unusual behaviours” in drivers before a curve or an obstacle on the road, and generates signals of alarm
42 per cent of fatal road accidents take place at night, according to information of the European Car Council

Scientists from six European countries, including Spain, have developed a new computer system so called DRIVSCO that allows vehicles to learn from the behaviour of their drivers at the wheel, in such a way that they can detect if a driver presents an “unusual behaviour” in a curve or an obstacle on the road and generates signals of alarm which warn him on time to react.

Un like other similar projects, DRIVSCO goes far beyond a computer vision system for driving assistance. The concept investigated was how to get that a car learns from the user’s driving facing a curve or an approaching intersection, a pedestrian or another vehicle. Regardless the type of driving of the driver, sporty or conservative (as it adapts to his driving), the system obtains a driving behaviour pattern.

Thus, during night driving, if the vehicle detects a deviation in his way of driving in face of a curve, it interprets that it is due t the lack of visibility of the driver (as the driver has a limited visibility of the low beams field, whereas the car’s night vision system is much more powerful and has a longer range). Therefore, it generates signals of alarm to warn the driver of his “unusual behaviour when approaching a curve”, or the detection of a potentially dangerous object, for instance.

Accidents at night
The persons in charge of this project state that 42 per cent of fatal traffic accidents happen at night, according to the data of the European Car Council, “an extremely worrying figure if we consider that traffic drops about a 60% during night hours”. This is due, among other factors, to the reduced visibility during night driving.

The Spanish representation in this project fell on a research group of the Department of Computer Architecture and Technology of the University of Granada (Spain) led by professor Eduardo Ros Vidal. DRIVSCO also has the participation of scientists from Germany (University of Göttingen, University of Münster and the company Hella & Hueck), Denmark (University of Southern Denmark), Lithuania (University Vytautas Magnus), Belgium (Catholic University of Leuven) and Italy (University of Geneva).

The research group of the University of Granada has developed a system of artificial vision (analysis of the scenario) in an only chip. Such device receives input pictures and produces a first “interpretation of the scenario” in terms of depth (3D vision), local movement, image lines, etc, everything in an only electronic chip. This system can be assembled in different types of vehicles in future. In addition, they have used a “reconfigurable hardware”, so that the system can adapt itself to new field of application.

Promising results
During the tests, a group of drivers drove using DRIVSCO system so that the car could learn from their driving style. The car had also a differential GPS incorporated (with several centimetres of precision), detection systems of wheel turns, braking, etc, so that the research groups managed to check in great detail the style of driving in every case and the performance of the system. The first tests have offered promising results and have proved the usefulness of the new concept.

Professor Ros highlights that with this project “we do not intend to develop automatic driving systems (as it would be very difficult for insurance agencies and car companies to come to an agreement in the event of a crash), but advanced driving assistance systems”. DRIVSCO’s final goal is to avoid car accidents and contribute to keep drivers alert, focusing their attention to the maximum.

Part of the results of this project has been published in the renowned scientific journals “IEEE Trans on Image Processing”, “IEEE Trans. on Vehicular Technology” and “IEEE Transactions on Circuits for Video Technology”.

Eduardo Ros Vidal | EurekAlert!
Further information:
http://www.ugr.es

More articles from Transportation and Logistics:

nachricht Tool helps cities to plan electric bus routes, and calculate the benefits
09.01.2017 | International Institute for Applied Systems Analysis (IIASA)

nachricht Realistic training for extreme flight conditions
28.12.2016 | Technical University of Munich (TUM)

All articles from Transportation and Logistics >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>