Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


SAFEDRIVE delivers safety and efficiency on airport runways

French and Portuguese partners, working together in the EUREKA-funded SAFEDRIVE project, have developed an important new satellite navigation-based system for managing airport ground traffic.

Today's airports are straining under the demands for increased capacity and high traffic throughput. This means more planes on runways but also more ground-based support vehicles, requiring ever tightening coordination of aircraft and taxiway and runway support. The EUREKA-funded project E!3142-SAFEDRIVE, coordinated by France’s M3 Systems, is using EGNOS satellite navigation signals to provide better information to vehicle drivers and better safety for flight crews and passengers.

In just a few short years, satellite positioning has become a standard and essential tool for navigating. Ship and aircraft crews, cars and trucks around the world would all be hard-pressed to revert to traditional navigation methods if GPS signals were switched off tomorrow. Europe is well on its way to establishing its own Global Navigation Satellite System (GNSS), called Galileo. EGNOS (European Geostationary Navigation Overlay Service) is essentially Europe's ‘pre-Galileo' system, its first concrete venture into satellite navigation.

“EGNOS is the European complement to GPS," explains SAFEDRIVE project coordinator Marc Pollina. "It is an augmentation system that improves the reliability and precision of GPS positioning. This added reliability is a key requirement for people and vehicles operating in critical areas such as airports."

Concrete terms
In the future, the impact of air traffic delays combined with the many environmental, economic and commercial challenges facing airports is likely to generate further congestion, even at airports that are not yet experiencing capacity problems.

The SAFEDRIVE project is advancing EGNOS-based technologies and service provision by developing key components such as a new modular vehicle transponder, providing user interface, navigation and communication capabilities. In addition, an innovative ground coordination station will host vehicle management applications, including monitoring and situation preparation capabilities, interfacing with vehicle transponders via wireless UHF or Wi-Fi links, and with air traffic control and airport operators.

"In simple terms," says Pollina, "SAFEDRIVE transmits vehicle position to a ground coordination station and broadcasts the airport situation from the coordination station to the vehicle. This increases situation awareness of vehicle drivers and also provides vehicle location to other airport personnel."

The wireless network linking vehicles and the ground coordination station is bandwidth limited and has to deliver a real time alarm generation delay of just one second. Communication is managed via a 'dynamical slot allocation table'. The algorithm used for the table has to account for the bandwidth capability, the number of vehicles and their parameters, and the airport configuration.

The project places particular emphasis on automation and driver interface ergonomics. "Automated control is a key priority," says Pollina. "This will mean increased reliability and safety. Avoiding runway incursions by vehicles is a major technological challenge in terms of service integrity and is closely linked to driver operational interface."

Larger context
SAFEDRIVE is a prime example of a new application using Europe's EGNOS satellite positioning system in a crucial 'safety-of-life' transport application. It could play an important role in the EU's Single European Sky initiative, aimed at creating a new system of more efficient air traffic management.

"Our technology significantly advances the optimisation of ground operations at airports, which means fewer delays and better service to the flying passenger," says Pollina. In the short term, EGNOS-based applications like those envisaged under SAFEDRIVE will enable increased air traffic capacity at smaller and less equipped airports, he explains, thereby decreasing congestion at larger ones.

Specifically, the SAFEDRIVE project aims at implementing EUROCONTROL recommendations on A-MGCS (Advanced Surface Movement Guidance and Control Systems) for airport surface vehicles, tackling the problem of congestion in European airspace arising from the insufficient integration of Europe’s air traffic control systems.

"The potential efficiency gains for aviation are huge, including fuel savings, better use of resources such as airports and airspace, improved safety and lower costs for technologies, including infrastructure." SAFEDRIVE, says Pollina, will mean real improvements for individual airports and for sustainable European aviation as a whole, but it could also be a key element in a larger global transport system. The market prospects are stimulating.

The new technology will be affordable for mid-sized airports, says Pollina. “The European market comprises about 150 medium-sized airports alone," he explains. "However, in the future a much bigger market can be envisaged if we think globally and if we apply SAFEDRIVE concepts to other sectors such as inland waterway navigation and maritime transport."

Benefiting through teamwork
M3 Systems is a leader in geo-positioning and communication technologies. SAFEDRIVE is the continuation of the DELTA project, which was financed by the French Research Ministry. The current consortium also includes experts in telecomms, international airport operations, and a research institute.

Pollina says SAFEDRIVE participants have reaped real benefits thanks to the co-operative research approach. "As a company, M3 Systems now has a better understanding of user needs, thanks to our airport partners. And on the R&D side, we have had new opportunities to experiment with technologies that are not part of our core business.

“Not only are we advancing our own interests as companies and organisations in this project," he continues, "but we also contribute to the confirmation of EGNOS today and the European Galileo satellite navigation system tomorrow, major infrastructure and ultimately commercial investments being made at European level.

“Working within the EUREKA framework allowed us to bring together a range of European expertise in this area. We also like the fact that EUREKA is definitely market oriented and 'light' on administration."

Shar McKenzie | alfa
Further information:

More articles from Transportation and Logistics:

nachricht Bremen University students reach the final at robotics competition with parcel delivery robot
19.10.2016 | BIBA - Bremer Institut für Produktion und Logistik

nachricht Discovering electric mobility in a playful way
18.08.2016 | Fraunhofer-Institut für Arbeitswirtschaft und Organisation IAO

All articles from Transportation and Logistics >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Oasis of life in the ice-covered central Arctic

24.10.2016 | Earth Sciences

‘Farming’ bacteria to boost growth in the oceans

24.10.2016 | Life Sciences

Light-driven atomic rotations excite magnetic waves

24.10.2016 | Physics and Astronomy

More VideoLinks >>>